\qquad

Area_Measures_and_Right_Triangles.tns. It is highly encouraged that you create the document.

In this activity, you will make a conjecture about the relationships among the areas of three equilateral triangles and make a connection to the Pythagorean Theorem.

Move to page 1.2.

Part 1: Making a conjecture

1. Which of the points A, B, C, M, N, and P cannot be moved? Explain why.
2. Grab and drag point C. Observe the four triangles and the three area measures. What changes and what stays the same?
3. Grab and drag points A and B. Observe the four triangles and the three area measures. Compare your observations to those you made when dragging point C.

4. Make a conjecture about the relationship between the three area measures.
\qquad

Part 2: Testing the conjecture

To test your conjecture, you will store some area measurements in a spreadsheet.

To insert a list and spreadsheet page: Press ctrl docv > Lists \& Spreadsheet.

Name the columns: Highlight the cell above the formula row in Column A and type amc. Press enter. Move to Column B above the formula row and type bnc. Press enter. Move to Column C above the formula row and type apb. Press enter.

Set up the manual data capture: Move to Column A in the formula row. Press Menu > Data > Data Capture > Manual. Press var and select aamc by pressing [8. Press enter.

Move to Column B in the formula row. Set the data capture as described above and select abnc. Move to Column C in the formula row. Set the data capture as described above and select aapb.

Press ctrl \measuredangle to return to page 1.2. Press ctr| \square to collect data. Drag points A, B, or C. Press ctrı to collect data again. Drag a point and continue to collect at least four different data points.

Press ctril to return to page 1.3.
5. What relationship do you observe among the data lists?
Area Measures and Right Triangles
Student Activity
Move to Column D in the row above the formula row. Type S and
press enter. Remain in the formula row of Column D. Press
var and select amc. Press \square var and select bnc. Press enter
to perform the calculation that adds columns A and B. Compare
the values in Column D with the areas in Column C.
6. How does this data verify or disprove your conjecture?
\qquad

	1.2	*Area	cameas...les	- ∇	K10
-	A amc	${ }^{1}$ bnc	${ }^{\text {c apb }}$	Ds	
-	= capture('	= capture(= capture	amc+'bnc	
1	9.68595	25.9262	35.6122		
2	9.68595	1.09619	10.7821		
3	9.68595	4.05591	13.7419		
4	9.68595	12.786	22.4719		
5	9.68595	33.9732	43.6591		
(1) $\mathrm{s}=$ 'amc+'bnc				4	4

7. Use what you know about the relationship of the measures of the legs of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle to express the height of equilateral triangles with sides lengths a, b, and c.
8. If the equilateral triangles have side lengths a, b, and c, what are the areas of the three triangles?
9. Use the answers to question 8 to write an equation for the conjecture.
10. Divide the left and right sides of this equation by the GCF of all the terms. Do you recognize this equation? Where have you seen this equation before?
11. What other figures could be drawn on the sides of right triangles for which the following statement would be true?

The sum of the areas of the two figures on the legs equals the area of the figure on the hypotenuse.

