\qquad

In this activity you will be exploring $y=\frac{\sin (x)}{x}$. When the value of a function is $\frac{0}{0}$, the function at that point is said to be indeterminate.

Problem 1 - Graphical Limit
Graphing the function $f(x)=\frac{\sin (x)}{x}$:
Go to the $\mathrm{y}=$ screen and type alpha $\mathrm{y}=$ and select $1: \mathrm{n} / \mathrm{d}$ and enter $\frac{\sin (x)}{x}$ into the fraction template.
Set the viewing window by pressing zoom and selecting 7:ZTrig to view the graph.

1. According to the graph, approximately what value does $\mathbf{Y}_{1}(x)$ appear to equal as x approaches 0 ?

Exploring the graph near $x=0$:
Remove the axes from the graph by pressing Znd zoom. Arrow down to 'Axes' and press \square until "Off" appears. Press graph to return to the graph of the function.
2. Press trace. Examine points in the neighborhood of $x=0$.
a. Type 0.1 enter. Then type 0.01 enter. What does the y-value equal as you move the point from the right toward $x=0$?
b. Repeat for $-0.1,-0.01$, etc. What does the y-value equal as you move the point from the left toward $x=0$?
c. What happens when you type 0 enter? Why?

Problem 2 - Numerical Limit

Press 2nd window to change TblStart to -0.1 and $\Delta T b l$ to 0.01 .
3. Press 2nd graph to view the table of the function being graphed. Arrow down to observe what is happening to \mathbf{Y}_{1} as x approaches 0 . To see more decimal places for \mathbf{Y}_{1} arrow over to the \mathbf{Y}_{1} column and continue to arrow down and up.
a. Is \mathbf{Y}_{1} defined when $x=0$? Explain.
b. Does Y1 appear to approach the same value from both sides of zero?
\qquad

Problem 3 - Practice Problems

Use a graph and a table to determine the limit of the following problems.
Tip: The last values for the x - and y-coordinates are automatically stored in case you want to recall the values of these coordinates for a calculation on the HOME screen. To see this press 2nd mode, then press X, T, θ, n and enter, then alphan 1.
4. $\lim _{x \rightarrow 1} \frac{x-1}{x^{3}-1}$
5. $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}}$
6. $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}$

