Euler Line
 Guided Investigation

Teacher Notes \& Answers

$\begin{array}{llll}7 & 8 & 9 & 10\end{array}$

Introduction

The three triangle centres: orthocentre, centroid and circumcentre have many amazing properties, however there is one super property that connects them all! In this activity you will combine your learning from the three activities:

- Circumcentre
- Centroid
- Orthocentre

Spoiler alert: You can the QR code to watch a video and review the three centres and see what happens when all three centres are determined.

Geometry

Open a New TI-Nspire Document and insert a Graphs Application.
Draw a triangle with vertices:

$$
A:(0,0) \quad B:(14,4) \quad C:(2,10)
$$

Question: 1.

Construct and determine equation for the three median lines and hence their point of intersection. (Centroid)
Note: In the diagram shown opposite the median lines have been changed to red dotted lines using the attributes and colour options. The centroid as at point D .

Answers: $y=\frac{7}{8} x, y=-\frac{8}{5} x+\frac{66}{5}, y=-\frac{1}{13} x+\frac{66}{13}$

Point of intersection: $\left(\frac{16}{3}, \frac{14}{3}\right)$

Question: 2.

Construct and determine the equation for the three altitudes and hence determine their point of intersection. (Orthocentre)

Note: In the diagram shown opposite the altitudes have been changed to blue dotted lines using the attributes and colour options. The orthocentre is at point E .

Answer: $y=-\frac{7}{2} x+17, y=-\frac{1}{5} x+\frac{34}{5}, y=2 x$
Point of Intersection: $\left(\frac{34}{11}, \frac{68}{11}\right)$

Question: 3.

Construct and determine the equation for the three perpendicular bisectors and hence determine their point of intersection.
(Circumcentre)
Note: In the diagram shown opposite the perpendicular bisectors have been changed to green dotted lines using the attributes and colour options. The circumcentre is at point F.

Answer: $y=-\frac{7}{2} x+\frac{53}{2}, y=-\frac{1}{5} x+\frac{26}{5}, y=2 x-9$

Point of intersection: $\left(\frac{71}{11}, \frac{43}{11}\right)$

Question: 4.

Determine the equation to the line passing through points D (centroid) and E (orthocentre).
Answer: $y=\left(\frac{\frac{68}{11}-\frac{14}{3}}{\frac{34}{11}-\frac{16}{3}}\right)\left(x-\frac{34}{11}\right)+\frac{68}{11}$ which simplifies to: $y=-\frac{25}{37} x+\frac{306}{37}$

Question: 5.

Determine the equation to the line passing through points E (orthocentre) and F (circumcentre) and comment on the result.
Answer: $y=\left(\frac{\frac{68}{11}-\frac{43}{11}}{\frac{34}{11}-\frac{71}{11}}\right)\left(x-\frac{34}{11}\right)+\frac{68}{11}$ which simplifies to: $y=-\frac{25}{37} x+\frac{306}{37}$
Comment: The two lines are the same, the points $D, E \& F$ are collinear.

Question: 6.

The triangle vertices are dynamic. Explore what happens to points D, E and F when the original triangle vertices are changed.
Answer: Points D, E \& F remain collinear. [This is the Euler line.]
Question: 7.
Change vertex C on the original triangle to: $(5,9)$. Describe what happens to points D, E \& F.
Answer: The points remain in a straight line [Euler line] and the line passes through C . This is because AC and $B C$ are at right angles, therefore the altitude through A and B intersect at C.

Question: 8.

Let $m_{1}=$ Gradient of line $A B ; m_{2}=$ Gradient of line $B C$ and $m_{3}=$ Gradient of line $A C$.
Determine the following: $-\frac{m_{1} m_{2}+m_{2} m_{3}+m_{1} m_{3}+3}{m_{1}+m_{2}+m_{3}+3 m_{1} m_{2} m_{3}}$
Answer: $m_{1}=\frac{2}{7}, m_{2}=-\frac{1}{2}$ and $m_{3}=5 . m_{E}=-\frac{\frac{2}{7} \times \frac{-1}{2}+\frac{-1}{2} \times 5+\frac{2}{7} \times 5+3}{\frac{2}{7}-\frac{1}{2}+5-3 \times \frac{2 \times 1 \times 5}{7 \times 2}}=-\frac{25}{37}$
Note that this is the same as the gradient of the Euler line.

