\qquad

In this lesson, you will be given the opportunity to summarize, review, explore and extend ideas about each of the four transformations: reflections, translations, rotations, dilations.

Use a straightedge to make sketches in the grid supplied.

1. Reflect $\triangle D E F$ about the y-axis. Then fill in the blanks with appropriate responses.

a. If $m \angle F=70^{\circ}$, then $m \angle$ \qquad $=$ \qquad ${ }^{o}$
b. if the slope of $\overline{D E}=\frac{6}{7}$, then the slope of \qquad $=$ \qquad
c. If the coordinates of E are $(6,4)$, then the coordinates of \qquad are \qquad
d. If the area of $\triangle D E F$ is 24 sq cm , then the area of \qquad is \qquad
e. If the coordinates of a point H on $\triangle D E F$ are (x, y), then the coordinates of H^{\prime} are \qquad
\qquad
2. Reflect $\triangle A B C$ about the x -axis. Then fill in the blanks with appropriate responses.

a. If $m \angle A=35^{\circ}$, then $m \angle$ \qquad $=$ \qquad ${ }^{\circ}$
b. If $B C=8 \mathrm{~cm}$, then \qquad = \qquad cm .
c. If the slope of $\overline{B C}=-\frac{2}{7}$, then the slope of \qquad $=$ \qquad .
d. If the perimeter of $\triangle A B C=17 \mathrm{in}$, then the perimeter of \qquad $=$ \qquad
e. If the coordinates of a point G on $\triangle A B C$ are (x, y), then the coordinates of G^{\prime} are \qquad
f. If the coordinates of a point H^{\prime} on $\Delta A^{\prime} B^{\prime} C^{\prime}$ are (p, q),
then the coordinates of H are \qquad
M: \qquad M^{\prime} : \qquad
N : \qquad N': \qquad
O: \qquad O': \qquad

3. Reflect $\triangle P Q R$ about the line $\mathrm{x}=-2$.

List the coordinates of each of the vertices:

P: \qquad P': \qquad

Q: \qquad Q': \qquad

R: \qquad R': \qquad

5. Reflect $\triangle S T U$ about the line $\mathrm{y}=2 \mathrm{x}$.

List the coordinates of each of the vertices:

S: \qquad S': \qquad

T: \qquad T': \qquad

U: \qquad U': \qquad

Name

\qquad
6. Translate $\Delta G H I$ up 3 units and to the left 6 units. Then fill in the blanks with appropriate responses.

a. If $\mathrm{GH}=9 \mathrm{in}$, then \qquad = \qquad in
b. If the perimeter of $\Delta G H I$ is 36 cm , then the perimeter of \qquad is \qquad .
c. If the slope of $\overline{H I}=\frac{5}{2}$, then the slope of \qquad $=$ \qquad
d. If the coordinates of H are $(6,-2)$, then the coordinates of \qquad are \qquad
e. If point A is on $\Delta G H I$ and its coordinates are $(3,-2)$, the coordinates of A^{\prime} are \qquad
f. If point Z^{\prime} is on $\Delta G^{\prime} H^{\prime} I^{\prime}$ and its coordinates are $(-2,2)$, the coordinates of Z : \qquad g. If the coordinates of a point P on $\Delta G H I$ are (x, y), then the coordinates of P^{\prime} are \qquad
h. Name three sets of parallel segments and list the slope of each:
\qquad slope is \qquad
\qquad slope is \qquad
\qquad slope is \qquad
\qquad
7. Translate $\triangle D E F$ by vector $\overrightarrow{P Q}$.

a. What are the coordinates of D^{\prime} : \qquad E': \qquad F': \qquad
b. If point A^{\prime} is on $\Delta D^{\prime} E^{\prime} F^{\prime}$ and has coordinates $(6,1)$, the coordinates of A ? \qquad
c. What segments are parallel to vector $\overrightarrow{P Q}$? \qquad

What is the slope of each of those segments? \qquad
d. Name three other pairs of segments that are also parallel and state their slopes:
\qquad slope is \qquad
\qquad slope is \qquad
\qquad slope is \qquad
\qquad
8. Given: $\triangle D E F$ is translated to the left 7 units and up 5 units.
a. If D has coordinates $(5,7)$, what are the coordinates for D^{\prime} ? \qquad
b. If E has coordinate $(-3,-7)$, what are the coordinates of E^{\prime} ? \qquad
c. If F ' has coordinates $(1,6)$, what are the coordinates of F ? \qquad
d. If D has coordinates (x, y), what are the coordinates for D '? \qquad
e. If E' has coordinates (p, q), what are the coordinates for E ? \qquad
9. Label the vertices of the images appropriately.
a. Rotate $\triangle D E F 90^{\circ}$ about point R. $\left(\Delta D^{\prime} E^{\prime} F^{\prime}\right)$
b. Rotate $\triangle D E F 180^{\circ}$ about point R. $\left(\Delta D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}\right)$
c. Rotate $\triangle D E F 270^{\circ}$ about point R. $\left(\Delta D^{\prime \prime \prime} E^{\prime \prime \prime} F^{\prime \prime \prime}\right)$
d. Rotate $\triangle D E F 360^{\circ}$ about point R. $\left(\Delta D^{(4)} E^{(4)} F^{(4)}\right)$
e. If $m \angle D=35^{\circ}$, then $m \angle D^{\prime}=$ \qquad .

f. If $E F=4.5$ in, then $E " F "=$ \qquad .
g. If the slope of $\overline{E D}=-2$, then the slope of $\overline{E^{\prime} D^{\prime}}=$ \qquad .
h. If the slope of $\overline{E F}=\frac{2}{3}$, then the slope of $\overline{E^{\prime \prime} F^{\prime \prime}}=$ \qquad .
i. If the perimeter of $\triangle D E F$ is 8 in, then the perimeter of $\Delta D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ is \qquad .
j. If the coordinates of point D are (3, 2), what are the coordinates of:
\qquad
D':
D": \qquad D"': \qquad $D^{(4)}$; \qquad
\qquad
10. Label the vertices of the images appropriately.
a. Rotate $\triangle X Y Z 90^{\circ}$ about the origin.

$$
\begin{array}{ll}
m(\overline{X Y})= & m\left(\overline{X^{\prime} Y^{\prime}}\right)= \\
m(\overline{Y Z})= & m\left(\overline{Y^{\prime} Z^{\prime}}\right)= \\
m(\overline{X Z})= & m\left(\overline{X^{\prime} Z^{\prime}}\right)=
\end{array}
$$

Fill in the blanks with either \square ('is parallel to') or \perp (' is perpendicular to'):

$$
\overrightarrow{X Y} \ldots \quad \overrightarrow{X^{\prime} Y^{\prime}} \quad \overrightarrow{Y Z} \quad \overrightarrow{Y^{\prime} Z^{\prime}} \quad \overline{X Z} \quad \underset{X^{\prime} Z^{\prime}}{ }
$$

11. Label the vertices of the images appropriately.
b. Rotate $\triangle X Y Z \quad 180^{\circ}$ about the origin.

$$
\begin{array}{ll}
m(\overline{X Y})= & m\left(\overline{X^{\prime \prime} Y^{\prime \prime}}\right)= \\
m(\overline{Y Z})= & m\left(\overline{Y^{\prime \prime} Z^{\prime \prime}}\right)= \\
m(\overline{X Z})= & m\left(\overline{X^{\prime \prime} Z^{\prime \prime}}\right)=
\end{array}
$$

Fill in the blanks with either \square ('is parallel to') or \perp (' is perpendicular to'):

$$
\overrightarrow{X Y} \quad \stackrel{X^{n} Y^{\prime \prime}}{\overrightarrow{Y Z}} \quad \stackrel{\rightharpoonup}{Y^{n} Z^{\prime \prime}} \quad \overrightarrow{X Z} \quad \widehat{X^{n} Z^{\prime \prime}}
$$

\qquad
12.a. The corresponding sides of rotated triangles are \qquad .
b. The corresponding angles of rotated triangles are \qquad .
13. If a triangle is rotated about a point through x°, the corresponding angles and the corresponding sides of the pre-image and image triangles are congruent and the triangles are
\qquad .

Therefore, a rotation is a \qquad or an \qquad .

We also say that a rotation is a \qquad and an \qquad transformation.
14. All of the questions in this exercise refer to the dilation that you will do below.

Dilate $\triangle X Y Z$ about point A with a scale factor of 3 .

\qquad
a. If $m \angle X=20^{\circ}$, then $m \angle X^{\prime}=$ \qquad
b. If $Y Z=8 \mathrm{~cm}$, then $Y^{\prime} Z^{\prime}=$ \qquad
c. If $X^{\prime} Z^{\prime}=30$ in, then $X Z=$ \qquad
d. If the perimeter of $\triangle X Y Z$ is 60 cm , then the perimeter of $\Delta X^{\prime} Y^{\prime} Z^{\prime}=$ \qquad
e. Calculate the following ratios. Write your answers as fractions.

1. $\frac{\text { perimeter }\left(\Delta X^{\prime} Y^{\prime} Z^{\prime}\right)}{\text { perimeter }(\Delta X Y Z)}=$ \qquad
2. $\frac{\operatorname{area}\left(\Delta X^{\prime} Y^{\prime} Z^{\prime}\right)}{\operatorname{area}(\Delta X Y Z)}=$ \qquad
3. $\frac{\text { perimeter }(\Delta X Y Z)}{\text { perimeter }\left(\Delta X^{\prime} Y^{\prime} Z^{\prime}\right)}=$ \qquad
f. If the area of $\Delta X Y Z=72 \mathrm{in}^{2}$, then the area of $\Delta X^{\prime} Y^{\prime} Z^{\prime}=$ \qquad
g. What is true about the segments $\overline{X Z}$ and $\overline{X^{\prime} Z^{\prime}}$? \qquad
h. The slope of $\overline{X Y}$ is $-\frac{3}{4}$. List another segment and its slope. \qquad
i. If $A X=10 \mathrm{~cm}$, then $A X^{\prime}=$ \qquad and $X X^{\prime}=$ \qquad
$\mathrm{j}-\mathrm{o}$. Calculate the ratios. Write your answers as fractions.
j. $\frac{A X^{\prime}}{A X}=$ \qquad k. $\frac{A Y}{A Y^{\prime}}=$ \qquad
l. $\frac{X Z}{X^{\prime} Z^{\prime}}=$ \qquad
m. $\frac{\operatorname{area}(\Delta X Y Z)}{\operatorname{area}\left(\Delta X^{\prime} Y^{\prime} Z^{\prime}\right)}=$
n. $\frac{m \angle X}{m \angle X^{\prime}}=$ \qquad o. $\frac{m \angle Z^{\prime}}{m \angle Z}=$ \qquad
\qquad
p. If point A is at the origin, answer the following questions.
4. If the coordinates of X are $(6,-12)$, then the coordinates of X^{\prime} are \qquad
5. If the coordinates of Z^{\prime} are $(6,-12)$, then the coordinates of Z are \qquad
6. If the coordinates of Y are $(-7,11)$, then the coordinates of Y^{\prime} are \qquad
7. If the coordinates of X^{\prime} are $(-18,24)$, then the coordinates of X are \qquad
q. If point A were to coincide with point X :
8. Which pairs of sides will overlap? \qquad
9. What is the other pair of sides and what is true about these sides? \qquad
10. In each of the following grids, a triangle was transformed.

State which transformation was done: dilation, reflection, rotation, translation.
And describe what was done: how many units, which direction, about what angle, ...
a. pre-image $\triangle P Q R$; image $\triangle P^{\prime} Q^{\prime} R^{\prime}$

b. pre-image $\triangle A B C$; image $\triangle A^{\prime} B^{\prime} C^{\prime}$

c. pre-image $\Delta X Y Z$; image $\Delta X^{\prime} Y^{\prime} Z^{\prime}$

e. pre-image $\Delta S T U$; image $\Delta S^{\prime} T^{\prime} U^{\prime}$

g. pre-image $\triangle P Q R$; image $\Delta P^{\prime} Q^{\prime} R^{\prime}$

d. pre-image $\triangle B C D$; image $\Delta B^{\prime} C^{\prime} D^{\prime}$

f. pre-image $\Delta A B C$; image $\Delta A^{\prime} B^{\prime} C^{\prime}$

h. pre-image $\Delta C D E ;$ image $\Delta C^{\prime} D^{\prime} E^{\prime}$

