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1. Saying 'Hello' to your CAS calculator 
 

You will use the following keys. 
• Press É 
The calculator cursor should be in the Home Screen (see 
the black cursor flashing in the bottom left hand corner). 
• Press  y É 
The calculator should turn off. 
• If you can’t see the screen use ¥ ¹ (lighter) or 

¥ Ã (darker) to change screen contrast. 
• " displays the Home Screen, where you 

perform most calculations. 

 
 

Basic Facilities of the TI-89 
Function Keys Cursor Pad 

[F1] through [F8] 
function keys let 
you select toolbar 
menus.  
 

 

 
 

The cursor is controlled by 
the large blue circle on the 
top right hand side of the 
calculator. This allows 
access to any part of an 
expression. 

 

Application Short Keys Calculator Keypad 
Used with the ¥ key to let you select 
commonly used applications: 
[Y=] [WINDOW] [GRAPH] [TblSet] [TABLE] 

 

Performs a variety of 
mathematical and 
scientific operations 

 
 
y ¥ ¤ and  ƒ modify the action of other keys: 

Modifier Description 
y 

(Second) 
Accesses the second function of the next key you press 

¥ 
(Diamond) 

Activates “shortcut” keys that select applications and certain menu items 
directly from the keyboard. 

 ¤ 
(Shift) 

Types an uppercase character for the next letter key you press. 

ƒ Used to type alphabetic letters, including a space character. On the keyboard, 
these are printed in the same colour as the ƒ key. 
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Key  Description 

O Displays a menu that lists all the applications available 
on the TI-89. 

N Cancels any menu or dialogue box. 

¸ Evaluates an expression, executes an instruction, selects 
a menu item etc… 

3 
Displays a list of the TI-89’s current mode settings, 
which determine how numbers and graphs are 
interpreted, calculated, and displayed.  

 
 
 

 

M Clears (erases) the entry line. 
 ½ Press C or D to move the cursor to the function or 

instruction. (You can move quickly down the list by 
typing the first letter of the item you need.) 
Press ¸ Your selection is pasted on the home 
screen. 

 
Application Lets you: 

[Home] Enter expressions and instructions, and performs calculations 
[Y= ] Define, edit, and select functions or equations for graphing 
[Window]  Set window dimensions for viewing a graph 
[Graph] Display graph 
[Table] Display a table of variable values that correspond to an entered 

function 
 
Press: To display 
ƒ „… etc. A toolbar menu– Drops down from the toolbar at the top of most 

application screens. Lets you select operations useful for that 
application 

y [CHAR] CHAR menu– Lets you select from categories of special characters 
(Greek, math, etc.) 

y [MATH] MATH menu– Lets you select from categories of mathematical 
operations 

 
• y [F6]  Clean Up to start a new problem: 
Clear a–z Clears (deletes) all single-character variable names in the current 

folder. 
If any of the variables have already been assigned a value, your 
calcula tion many produce misleading results. 

 
Problem? Try this! 
If you make a typing error  If you make a typing error use 0 to undo one 

character at a time 
If necessary, press M to delete the complete line. 

If you want to clear the home 
screen completely 

Press F1 [8] 
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Mode Settings 
Press z, this shows the modes and their 
current settings 

If you press F2 then ‘Split Screen’ specifies 
how the parts are arranged: FULL (no split 
screen), TOP-BOTTOM, or LEFT-RIGHT 

  
 
(a) Entering a Negative Number 

 Use | for subtraction and use · for negation. 
To enter a negative number, press · followed by the number. 
To enter the number –7, press · 7. 
9 × · 7 = –63,  
9 × | 7 = displays an error message 

To calculate –3 – 4, press · 3 | 4 ENTER    
(b) Implied Multiplication 

If you enter: The TI-89 interprets it as: 
2a 2*a 
xy Single variable named xy; CAS does not read as x × y 

 
(c) Substitution 

Using [ | ] key to find the value of a function or expression given particular values of a 
variable 
eg) x^2+2 Í x=3      
This calculates the value of  x2 + 2 given x = 3 
Using ‘STORE’ key: § 
eg) Find  f(2)  if f (x) = − x3 + 2  

-x^3+2 §  f(x)     –x3 + 2→ f(x) 
f(2)   –6 

(d) Rational Function Entry  
f ( x)
g(x)

=
( f (x))
(g(x))

= ( numerator  ) e (  denominator  ) 

For example, 
x +1

2x − 1
 →  (x + 1) e (2x – 1) 

(e) Operators  
addition:  + subtraction :  – multiplication:  × division: ÷  Exponent:  ^ 

 
(f) Elementary Functions  

exponential:  e^(x) natural logarithm: ln(x) square root: √ absolute value: abs(x) 
trigonometric: sin(x), cos(x), tan(x), sin-1(x), cos-1(x), tan-1(x) 
 If you want sec(x) then put 1/cos(x) or use the catalogue: ½ [3] 

Í, cosec(x) is 1/sin(x). 
Note: The trigonometric functions in TI-89 angles are available in 
both degrees and radians. If you want degrees (180°) or radians (π) 
change using the 3 key previously discussed. 

(g) Constants  
i : imaginary number 
with y ½ key 

π  :  Pi 
with y › key 

∞ :  infinity 
with ¥ ½key 
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(h) Recalling the last answer 

 y[ANS] 
ex)  ans(1)  Contains the last answer 

  ans(2)  Contains the next-to- last answer 
(i) Cutting, Copying and Pasting 

Use  AB or  DCto highlight an expression. 
Press [F1]5, to copy and [F1]6 to paste. 
Press Í to replace the contents of the entry line with any previous entry. 

 (j) When differentiating with respect to x 
Limit lim

x→a
f (x) :   lim( f(x), x , a ) Differentiation 

d
dx

f (x) :  d( f(x) , x ) 

Indefinite Integral f ( x)dx∫ : ∫ ( f(x) , x, c )  

Definite integral f (x)dx
a

b

∫ : ∫ ( f(x), x, a, b)  

Area between f(x) and g(x) on the interval [a, b]: f (x ) − g(x)
a

b

∫ dx  

 
2. [Y=  ] and [Table] 
(a) The [Y=  ] menu 
 Press ¥ [Y=] to see the following: 

 
 
 If there are any functions to the right of any of these eight equal signs, place the cursor on 

them (using the arrow keys) and press ‘ 
 Place the cursor just to the right of y1= and follow the sequence below. 
 Press See Explanation 
 2x + 3 y1(x) = 2x + 3 

 
You have entered  
y1 = 2x + 3 

 "  This returns you to a blank Home 
Screen. 

 y1(x) Í y1(x)                      2x + 3 This pastes y1 on the Home Screen. 
 y1(4) Í y1(4)                             11 This finds the value of y1 when x = 4. 
 
(b) Table 
 Press ¥ [TABLE] to see the table of values for 2x + 3, as shown below: 

 
 Press • [TblSet], change the settings and see the effect in [TABLE]. 

  



 Ye Yoon Hong & Mike Thomas, Page 6 of 50 Introduction to TI-89 
The University of Auckland  

  
 
 By changing [TblSet] from [1. AUTO] to [2. ASK], complete the table below: 
 x y1 Remember:  y1 is still set to 
   11 ? 2x + 3 
 –3 ?  
 –5 ?   
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3. Graphing 
 
(a) Displaying Window Variable in the Window Editor 
Press  ¥  [WINDOW] to display the Window Editor. 

  
 

Variables  Description 
xmin, xmax, ymin, ymax Boundaries of the viewing window. 
xscl, yscl Distance between tick marks on the x and y axes. 
Xres Sets pixel resolution (1 through 10) for function graphs. The 

default is 2. 
(b) Overview of the Math Menu 
 
Press F5 from the Graph screen 

 
 
Math Tool Description 
Value Evaluates a selected y(x) function at a specified x value 
Zero, Minimum, 
Maximum 

Finds a zero (x-intercept), minimum, or maximum point within an 
interval. 

Intersection Finds the intersection of two functions. 
Derivatives Finds the derivative (slope) at a point. 

f (x)dx∫  Finds the approximate numerical integral over an interval. 

A:Tangent Draws a tangent line at a point and displays its equation 
 
(c) Finding the Maximum & Minimum Values of a Function from its Graph 

1. Display the Y=Editor. 
2. Enter the function 
3. Open the Math Menu      F5, and select 4: Maximum. 
4. Set the lower bound. 
5. Set the upper bound. 
6. Find the maximum point on the graph between the lower and upper bounds. 
7. Transfer the result to the Home screen, and then display the Home screen. 
 "          
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(d) Overview of the Zoom Menu 
 
Press F2 from y=Editor, window Editor, or 
Graph screen 
 

 
 
Zoom tool Description 
1:ZoomBox Lets you draw a box and zoom in on that box. 
2:ZoomIn 3:ZoomOut Lets you select a point and zoom in or out by an amount defined by 

SetFactors . 
4:ZoomDec Sets ∆x and ∆y to 0.1, and centres the origin. 
6:ZoomStd Sets Window variables to their default values. 

xmin= –10, xmax= 10, xscl=1, ymin= –10, ymax= 10, yscl= 1, xres= 2 
Notes: 
To get out of the graphing mode use ". 
This will not work while the BUSY icon is flashing in the bottom right hand corner. 
Adjust your graph by selecting F2 and choosing 2:ZoomIn,  3:ZoomOut,  or  A:ZoomFit 
eg) Graph   y = x2   by following these instructions.  

¥ [y=]x ^ 2 Í 

 

¥ [F3] 

 
To draw a new graph go to o and change the formula in the y1 position using the cursor to  move 
up to it to delete it.  This effectively clears the previous graph as well. Alternatively, using y2 will 
add the new graph to y = x2. 
" returns you to the Home screen. 
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4. The Algebra Menu 
 
 
Menu Item 

 
Description F2 MENU 

  
1: solve Solves an expression for a specified variable. This returns solutions only, 

regardless of the Complex Format mode setting (For complex solutions, select 
A:Complex from the algebra menu). 

2: factor Factorises an expression with respect to all its variables or with respect to only a 
specified variable. 

3: expand Expands an expression with respect to all its variables or with respect to only a 
specified variable. 

4: zeros Determines the values of a specified variable that make an expression equal to 
zero. 

5: approx Evaluates an expression using floating-point arithmetic, where possible. 
6: comDenom Calculates a common denominator for all terms in an expression and transforms 

the expression into a reduced ratio of a numerator and denominator. 
7: propFrac Returns an expression as a proper fraction expression. 
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Solving Linear Equations  
Example. Solve 2x – 5 = 3x – 9. 
We can solve this in three different ways: algebraically, graphically, and numerically. 

Press See Explanation 
Method 1 a) 
 
[HOME] F2   1 
2x -5 = 3x -9 ,x)Í 

 

2x – 5 = 3x – 9 is solved by an 
algebraic method. 
The , x tells the calculator to 
solve with respect to x.  
x = 4 is the value which makes 
both sides equal in value. 

Method 1 b) 
2x - 5 = 3x - 9 Í 
2x–5 +5 = 3x-9+5Í 
2x-3x = 3x -3x Í 
-x/-1 = -4 /-1Í 

 

 

To find the value of x, we need 
to simplify the given 
expression step by step: 
If we add 5 to both sides, the 
expression is simplified to 
2x=3x – 4. 
If we subtract 3x, the 
expression is simplified to –x= 
–4. 
If we divide by –1, finally we 
get x = 4 

Method 2. 
 
¥ [F1] 
2x - 5 Í 
3x - 9 Í 

 

Here each side of the equation 
is defined as a function, using 
y1(x) and y2(x): 
y1(x)= 2x – 5 
y2(x)= 3x – 9 

¥  [F3] 

 

Looking at the two graphs, we 
can see that they intersect at 
one point. 

[F5]  5 
 

 

To find the intersection point 
we need to use the function key 
[F5]. 
 

1st curve? Í 
2nd curve? Í 
Lower bound? 0 Í 
Upper bound? 6 Í 

 

1st curve means y1(x),  
2nd curve means y2(x). 
The lower and upper bound 
means the interval in which the 
intersection point is found. 
So the two graphs intersect at 
the point (4, 3). i.e. x = 4 

Method 3. 
 
¥  [F4] 
tblStart: –1  
∆tbl: 1 
¥  [TABLE] 

 

 

The point of intersection can 
be found using a table. 
Enter y1 and y2 as in method 
2. 
When we look at the point x=4, 
we can see the values of the 
two functions are the same, and 
equal to 3.  
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Looking at the three methods we see that the value of x is the same in each case. 
Exercise  
Solve the following equations. Make sure you use each of the three methods above at least once. 
1. |3x – 2| = 5 2. x2 –2x +7 = 22 3. 2 − x = x  

4. ln
x + 1

2
 
  

 
  − ln

x
2

 
  

 
  = 3 

5. e4x = 43–2x  
(give the exact solution) 

 

Screen-snaps Exercise 

Reproduce the following screens on your TI-89. 

1.  

 

2.  

 

 

3. 

  

4. 

 

For this question you will need to use the 

split-screen facility using:  

[F2] ‘Split Screen’ – see page 3. 

  

Investigation 

Find all the integer values of a for which ax + 1 = 3x + 5 has integer solutions. 
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Inequalities 
Example. Solve 3x – 2 = 7x +10 
Method 1)  
[F2]  3x - 2 ¥ >= 7x +10 , x ) Í 
 
Note: The >= automatically changes to ≥ once the 
equation is entered. 

 
 
Let us now solve the inequality step by step.  
Method 2) In the following we transform in an equation into the form ‘x = or = …’ by specifying 
equivalent transformations. 
Step 1. 3x – 2 = 7x +10 Í 
The subtraction of 7x is a reasonable first step. 
Step 2. The application of the equivalent transformation of adding –7x to both sides of the equation, 
adding 2 and dividing 4. 
y[ANS] - 7x Í       y[ANS] + 2 Í       y[ANS]/-4 Í 

  
Note: ans(1) always contains the last answer, ans(2), ans(3), etc, also contain previous answers. For 
example, ans(2) contains the next to last answer. 
 
Method 3) 

     
 
Method 4) 

    
 
Exercise. Solve the following inequations: 
1. |4x – 2| = 6      2. |4x – 2| = 6 
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5.  Types of functions 
 
Constant Function 

f(x) = c 
Example.  y = 1, y = –2 

 
 
Linear Function 

f(x) = mx + b 
 
Example. y = 4x–2 

   
 
Quadratic Functions  

f(x) = ax2 + bx + c,   a ? 0 
Example: y = x2 – x – 2 = (x – 2)(x + 1) 
 

    
 
Cubic Functions  

f(x) = ax3 + bx2 + cx + d,   a ? 0 
 

Example. y = x3 – x = x(x + 1)(x – 1) 
 

    
Combinations of functions  
(f + g)(x) = f(x) + g(x) (f • g)(x) = f(x) • g(x) 
(f – g)(x) = f(x) – g(x) (f / g)(x) = f(x) / g(x) 

Example. Let f(x) = x2 – x, g(x) = 
1

x
 

(f + g)(x) = 
(f – g)(x) = 
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(f • g)(x) = 
(f / g)(x) = 

  
 
Composite Functions  
 

x
f

f(x) g(f(x))

Domain of 
f

Range of f
Domain of g

Range of g

g

 
Example.  f(x) = 2x + 1 and g(x) = x2 – 1 

(g o f)(x) = (2x + 1)2 – 1 = 4x(x + 1)  (f o g)(x) = 2(x2 – 1) + 1 = 2x2 – 1 

1
2
3

.

.

.

x

 3
 5
 7

  .
  .
  .
2x+1

   8
   24
  48

    .
    .
    .
(2x+1)2Š1

f(x) g(f(x))x

     

1
2
3

.

.

.

x

 0
 3
 8
 
  .
  .
  .

   1
   7
  17

    .
    .
    .

g(x) f(g(x))x

x2 −1 2(x2 −1)+1

 
  

Definition  
                 (f o g)(x) = f(g(x))                 cf.   inverse f o f–1 = I 
                 (g o f)(x) = g(f(x)) 

 
f(g(x)) is a function of a function. The domain of f o g is the set of all numbers x in the domain of g 
such that g(x) is in the domain of f. 
Example. f (x) = 2x − 3 , g(x) = x2 – 1 
(f o g)(x) =  
(g o f)(x) =  
(g o g)(x) = 
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The Exponential Function 

The exponential function is given by 
f(x) = ex 

where the base “e” is approximately equal to 2.7182818284. 
n 1 10 100 1000 10000 100000 1000000 

1 +
1
n

 
 

 
 

n

 
2 2.594 2.705 2.717 2.718 2.718 2.718 

 

lim
n →∞

1 +
1
n

 
 

 
 

n

 = 2.71828182845904… = e 

     

 

f(x) = ex f(x) = e-x 

0 .50 1.00 1.50-0.5 0-1.001.50

1.00

2.00

3.00

x

f(x)

 0.50 1.00 1.50-0.50-1.00-1.50

1.00

2.00

3.00

x

f(x)

 
Domain: x ∈ R 
Range: y > 0, y ∈ R 

Domain: x ∈ R 
Range: y > 0, y ∈ R 

 
Inverse Functions 

x
f

f(x)

f −1
 

Definition. 
Let f be a one – to – one function with domain A and range B.  
Then its inverse function f–1 has domain B and range A and is defined by 

f –1(y) = x   ⇔  f(x) = y 
for any y in B. 
• Do not mistake the – 1 in f –1 for an exponent. Thus 

f–1(x) ?  
1

f (x)
 

(The reciprocal 1
f ( x)

 could be written as [f(x)]–1 

Example 1. 
Find the inverse of the function f given by the following set: 
f = {(10, 20) (15, 15) (25, 3) (27, 3)} 
Answer:   f–1 = {(20, 10) (15, 15) (3, 25) (3, 27)} 
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Example 2. Find the inverse of the function y = 2x 

0
1
2
3

x

0
2
4
6

f(x)
f

 

0
1
2
3

x

0
2
4
6

f(x)
f −1

 
If the function is given as a graph, you must reflect the graph in the line y = x to find the graph of 
the inverse. 

1.00 2.0 0 3 .0 0 4 .00- 1.0 0- 2.00- 3 .00- 4 .0 0

- 1.00

- 2.00

1.00

2.00  y=2x  y=x

y =
1

2
x

 
 
How to find the inverse function. 
Step 1. Write y = f(x). 
Step 2. Solve this equation for x in terms of y. 
Step 3. Interchange x and y. The resulting equation is y  = f –1(x). 
Example. Find the inverse function of y = x . 
Sol)  
Step 1. Write y = f(x). 

y = x  (x = 0, y = 0) 
Step 2. Solve this equation for x in terms of y. 

y2 = x (x = 0, y = 0) 
so x = y2 

Step 3. Interchange x and y. The resulting equation is y  = f –1(x). 
y = x2 (x = 0, y = 0) 

 
Example: For the given function, f(x) = x2 + 2 (x = 0), find f–1(x), the inverse of f. 
Solution: Since x2 = y – 2, x = y − 2  (y = 2) 
The inverse function is  y = x − 2  (x = 2) 
 

      
Example. y = ex and y = lnx 
(since x = lny) 
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Logarithmic & Exponential Functions 
Logarithmic functions are the inverse functions  to exponential functions. 
Let  f(x) = 2x and f(x) = log2x are a pair of inverse functions. 

     
23 = 8  ⇔ 3 = log28 

104 = 10000 ⇔ 4 = log1010000 
10 0.4771  = 3 ⇔ 0.4771 = log103 

3n = 243  ⇔ n = log3243 
an  = x ⇔  n = logax  (a > 0, a ? 0) 

(the logarithm of x to base a is said to be n) 
Logarithms using base e are called natural logarithms, and  logex = lnx 

Rational functions 
An asymptote is the behaviour of a function (or the graph of a function) for extremely large values 
of x or y. For very large values of x or y, graph of y = f(x) gets close to the asymptote. 
Rational functions are of the form : f (x) =

p(x)
q (x )

 

(where p(x) and q(x) are polynomial expressions q(x) ? 0) 
Asymptotes: 

f (x) =
ax + b
cx + d

=
k

x – p
+ q  

(To make simplify divide each term in the numerator and denominator by the highest power of x 
which appears) 

• Vertical asymptote : x = p, (this is found by equating the denominator to zero and solving 
the resulting equation.) 

• Horizontal asymptote: y = q, (this is found by finding the limit of the function as x gets 
very large.) 

• Find the y- intercept by substituting x = 0 in the function. 
• Find the x-intercept by equating f(x) = 0, and solving for x. 
• Domain: x ?  p, x∈R 
• Range: y ?  q, y ∈ R  

Example. Sketch the function f (x) =
2x + 3
x − 5

, identifying all intercepts with the axes and all 

asymptotes. 

 
 
f (x) =

2x + 3
x − 5

=
13

x − 5
+ 2  
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Vertical asymptote: Horizontal asymptote: 

y-intercept: x-intercept: 

Domain: Range: 

Exercise.  

1. Let f (x) =
x2 − x − 6

x + 2
. Sketch the graph of f(x) including any x and y intercepts. Can you explain 

why the graph has this form? 

2.  Given g(x) =
2 x + 3
x − 5

 is invertible on x? 5, find f –1(x), the inverse of f. 
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6.  Transformations 
 

y = f(x) + k  K units upward 

y = f(x) – k K units downward 

y = kf(x) Vertically by a factor of k 

y= –f(x) Reflect the graph of y = f(x) in 

the x axis 

y = f(–x) Reflect the graph of y = f(x) in 

the y axis 

y = f(x – m)  Shift the graph of y=f(x), m units 

to the right 

y = f(x + m)  Shift the graph of y=f(x), m units 

to the left 

 

 

1 .0
0

2. 0 0 3 .0 0 4. 00 5 .0 0 6. 0 0 7 .0 0 8. 0 0-1 .0 0- 2. 0 0-3 .0 0- 4. 0 0

- 1. 00

1 .0 0

2 .0 0

3 .0 0

4 .0 0

5 .0 0

6 .0 0

7 .0 0

y=f(x+ k)

y=f(x) y=f( x-k)

y= f( x)-k

y= f(x)+k

 

 
Transformations parallel to the x– and y–axis 
Example. The purpose here is to explain the relationship between f(x), f(x–a) and f(x)+b. Define the 
function f(x)=x2.  
If f(x) is defined by x2 then f(x – a) and f(x) + b are found to be (x–a)2 and x2 + b by following these 
instructions: 
"  [F4]  1  f (x )= x ̂ 2  Í 
f(x – a) Í 
[F4]  1 a = { –2 , –3 , 2 , 3 } Í 

"  [F4]  1  f (x )= x ̂ 2  Í 
f(x) + b Í 
[F4]  1  b = { –2 , –3 , 2 , 3 } Í 

The bracket allows us to be enter a number of different values for a or b. 

  

  
Note that when drawing f(x – a) and f(x) + b the calculator uses each of the values of a or b entered, 
showing the effect of them. We can see that the effect of 
f(x – a) 

 

f(x) + b 

 
We can also deal with single values. 
e.g. Compare the general functions f(x–2) and f(x) + 2 for f(x) = x2. 
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Looking at the general functions f(x–2) and f(x) + 2 we can see that those functions correspond to 
the actual functions (x–2)2 and x2 + 2 based on the function f(x) = x2, and the graph shows the 
transformation parallel to the x- and y-axes.   

  
 
Sine and Cosine Function 

Example. Show that sin x +
π

2
 
 
  

 
 = cosx 

     
 
Example. Find the difference between  f(x–a) and f(x) + b  when f(x) = sinx. 
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7. Limits 
 
• The Calc Menu 
From the Home screen, press [F3]. 
Menu Item Description 
d differentiate Differentiates an expression with respect to a specified variable 

∫ integrate Integrates an expression with respect to a specified variable. 

limit Calculates the limit of an expression with respect to a specified 
variable 

 

To find  lim
x→∞

6x
x − 2

  follow the key sequence. 

[F3]  3 ( 6 x )/(x - 2 ), x , ¥ ½ ) Í 
The following should appear on your calculator screen. 

  
 
Note: Put both numerator and denominator in brackets. 
Example 1. Find lim

x →0
x cosx  

We can get a sense of the limit by defining the function as f(x) and getting values of x near to zero. 
To find  lim

x →0
x cosx  follow the key sequence: 

 
[F4] 1   f(x) = x cos(x)  Í 
Whenever we change x taking steps of x closer to 
0 then the value of f(x) is getting closer to 0. 

[F3] 3  f(x) , x ,0 ) Í 
We can confirm our guess by asking for the limit. 

 

    

    

  
The graph and table help to confirm, in other representations, that the function has a limit of zero 
when x→0. 
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Example 2. Find lim
x →0

sin x

x
 

This is an important limit, but one that cannot be found by putting x = 0, since the function is 
undefined for x = 0. 
[F4]  1  f(x) = sin (x) e x  ) Í  
Whenever we change x taking steps of x closer to 0 then the value of f(x) is getting closer to 1. 
[F3]  3  f(x), x, 0 ) Í  

     

     

 

 
Again the graph and table provide supporting evidence for the limit. 

Example 3. lim
x →0

x 2 sin
1

x
 

[F4]  1  f(x) = x2 sin (x)  Í  
[F3] 3  f(x)  , x ,0 )Í 

¥ [y=] 

                                     
 
¥ [window] ¥ [graph] 
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¥  [TABLE]  

       

Example 4. lim
x →0

sin
1

x
 

Some limits do not exist. We can build an understanding of the reasons for this. 

     

   
 
We can plot the graph and zoom in on x = 0 or from the table we can see that no matter how much 
we zoom in on x = 0 values either side are the same but differ in sign. This leads to the idea of left 
and right limits. 
 
Left and Right Limits and Differential Functions  
We can use the left and right limits to see why some functions are not differentiable at certain 
points. 
Consider the expression 

f (t ) =
t2 − 7t + 10

t − 2
 

Define the function: [F4] 1   f(t) = ( t2 – 7t + 10) ¥ ( t – 2)  Í 
Investigate right limit: [F4] 1 t = {1.9, 1.99, 1.999, 1.9999} then evaluate f (t) 
Investigate left limit: [F4] 1 t = {2.1, 2.01, 2.001, 2.0001} then evaluate f (t) 
Right limit is: [F3] 3 f (t) , t, 2, -1 ) Í  
Left limit is: [F3] 3 f (t) , t, 2, 1 ) Í  
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Example 5. Find lim
x→2

f (x)  for the function f (x) =
x 2 for

6 − x for
 
 
 

x < 2
x ≥ 2

. 

Define the piecewise functions by using the following instructions. 
[F4] 1   f(x) = when (x2 , x < 2, 6 – x ) Í 
Investigate right limit: [F4] 1 x = {1.9, 1.99, 1.999, 1.9999} then evaluate f (x) 
Investigate left limit: [F4] 1 x = {2.1, 2.01, 2.001, 2.0001} then evaluate f (x) 
Right limit is: [F3] 3 f (x) , x , 2, -1 ) Í  
Left limit is: [F3] 3 f (x) , x , 2, 1 ) Í  
 

  

 
 

Exercise. 
Using the symbolic, graphical and tabular representations find these limits if possible. 

1. lim
x→2

(3x −1)      2. lim
x→2

x2 + 5x − 14
x2 − x − 2

 

3. lim
x→∞

1 +
1
x

 
  

 
  

x

    4. f (x) =
x

x2 − 2x − 3
(x ≤ 0)
(x ≥ 0)

 
 
 

, lim
x→0

f (x)  

5. lim
x→0

| x |      6. lim
x→−3−

x2 − 9
x + 3

 
 

Techniques for finding limits 
(a) Numerically (substitute numbers from both sides) 
(b) Direct substitution 
(c) Algebraic Cancellation then substitution 
(d) Limits as x →∞ (divide top and bottom by the highest power of x) 
 

Summary table for common cases if you substitute first: 

Result when substituting Conclusion 

Sensible answer This is the limit 

number ≠ 0
0

 Limit does not exist 

0
number ≠ 0

 Limit = 0 

0
0

 Factorise, cancel, and try again 
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8. Differentiation 
We can get the calculator to differentiate directly and give the answer: 
To differentiate the function y = x2 − 3x + 6 follow these key sequence instructions: 
[F3]  1 x2 – 3x + 6, x) Í 
The following should appear on the calculator display. 
 

  
 
Notes: 
We type comma x at the end of the expression because we are differentiating with respect to x.  
There is no need to type in the multiplication sign between 3 and  x. 
All expressions are enclosed in brackets. 
 
Exercise  
Find the derivative of each of the following functions using the TI–89 
1. x2 + 5x3  2. 20x8 + 9x3 + 52  3. (x–6)(x+5) 

4. 
x2 − 9
x + 3

 5. 
e−2 x

3ex −1
 6. 2 x3 sin 2 x − cos(2x −1)  

7. 3x2 ln x  8. 
3
x2  9. 9x 2 − 36  

Answers: 
1. 15x2 + 2x  2. 27 x2 + 160x 7  3. 2x − 1  4.  1 

5. 
−(9ex − 2)e−2 x

(3ex −1)2  6.  2 sin (2x − 1) + 4x3 sin (x)cos(x) + 6x2 (sin (x))2  

7.  6x ln(x) + 3x  8.  
−6
x3  9. 

3x
x2 − 4

  

Example 1. Find the derivative of f(x) = x2 at x = 2. 
We can do differentiation from first principles by using the ideas of limits we have developed. 
Method 1. 
[F4]  1  f(x) = x2 Í  
In this method we use the calculator function r(h) 
(i.e. rate of change) at the point x = 2: 
Whenever we change h taking steps of h closer to 
0 then the value of f(x) is getting closer to 4. 

[F3]  3  r(h) , h, h, 0 ) [ | ] x = 2 Í 
[F3]  1  f(x), x ) [ | ] x = 2 Í 
We can confirm our guess by asking for the limit 
and differentiation. 

  

Thus the rate of change at x = 2:  lim
h→0

f (2 + h) − f (2)

h
= ′ f (2)  = 4. 

Method 2.  
In this method we use the calculator function r(x, h) (i.e. rate of change) at the point x = 2: 
Whenever we change h taking steps of h closer to 0 then the value of f(x) is getting closer to 4. 
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We can see the general function 2x. 

 
Example 2. Find the derivative of f(x) = sinx 
Method 1. 

  

0

sin(0 ) sin(0)
(0) lim cos(0) 1

h

dy h
f

dx h→

+ −′= = = =  

0

sin( ) sin( )
( ) lim cos( )

h

dy x h x
f x x

dx h→

+ −′= = =  

  
Method 2.  

 

 

 
 
Example. Find the derivative of f(x) = xn 
This example can be difficult from first principles if students do not have access to the binomial 
theorem. 
Define the function f(x) = xn. When we define the value of power, n = 1, 2, 3, 4, 10 the functions are 
changed to the actual functions, x, x2, x3, x4, x10. If we define the slope function slope(h) as the 
average rate of changed, then we can see that the derivative of the functions are 1, 2x, 3x2, 4x3, 10x9 
as follows: 

     
Defining the rate of function r(h), we can get that the general derivative of xn is nx n-1 as follows: 
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Thus 
dy

dx
= ′ f (x) = lim

h→ 0

(x + h)n − xn

h
= nx n−1  

 
Differentiation Formulas 

f(x) f′(x)  

a)  f(x)= c (c is constant) ′ f (x)  = 0 

b)  y= xn ′ y = nx n−1 

c)  y = c ⋅ f (x)   (c is constant) ′ y = c ⋅ ′ f (x ) 

d)  y= f(x) + g(x) ′ y = ′ f (x) + ′ g (x)  

 
Product rule 

Where y = u ⋅v   and u and v are both functions of x, then: 

dy
dx

=
du
dx

⋅v + u ⋅
dv
dx

 

or 

y = f(x)g(x)  

′ y = ′ f (x)g (x ) + f ( x) ′ g (x )   

Example. Find the derivative of the function  y = (x 2 + 6 x )(4 x − 3)  

      
Exercise. Differentiate the following using the product rule. 

1. y= (x3 – 3)(x2 + 2)  2. y =
2x2 +1

x 2
 

3. y = x x3  4. y = x(3x 2 −1) 

 

Quotient rule 

Where y =
u
v

   and u and v are both functions of x then   
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dy
dx

=

du
dx

⋅v − u ⋅
dv
dx

v2
 

or 
y =

f(x)
g(x)

  (g(x) ? 0) 

′ y =
′ f (x)g(x) − f (x) ′ g (x)

{g(x)}2     

pf) 

y = f ( x)
g( x)

= f (x) ⋅ g(x)−1

′ y = ′ f (x)⋅ g( x)−1 − f (x) ⋅ g( x) −2 ⋅ ′ g (x)

=
′ f (x)

g(x)
−

f (x) ⋅ ′ g (x)
g(x)2

=
′ f (x)⋅ g( x) − f ( x) ⋅ ′ g (x)

g(x)2

 

Example.  If y =
x2

3x − 2
 

      
 

Exercise. Differentiate the following using the quotient rule. 

1. y =
x − 1
x + 3

 2. y =
x2 − 6x
x − 3

 

3. y =
x − x3

x
  

 
Chain Rule 

Composite Function 

If             y= f(u), u= g(x)  

then dy
dx

=
dy
du

⋅
du
dx

  or  ′ f (g(x)) ⋅ ′ g (x) 

y= f (ax+b)               dy
dx

= a ′ f (ax + b)  

y = { f (x )}n             dy
dx

= n{ f (x)}n −1 ′ f (x)  
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Example. If y = (3x + 2)3  find dy
dx

 

 
Exercise. Differentiate each of these. 

1. y = (7x+5)5 2. y = (4x2 + 2x)3 

3. y = (7x – x2)-2 4. y = (ax + b)3 

5. y = (
3
5

x −
1
2

)2  6. y =
4

x + 3
 

7. y =
1

1+ x
 8. y = (x + x )4  
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9. Finding the tangent line at a point on curve  
 
To Find the equation of the tangent to y = x2  at x=1 
¥ [y=] x2 Í  ¥  [Graph] [F2] - 4      [F5]    A:Tangent 
 
The following should appear on your calculator: 

     

     
 
Exercise. 
Find the tangent line to a curve. 

1. 2x2 − x − 15,   at x= –1 2. 2x3 − 4x 2 − 6x ,  at x= –2 
3. 2x 4 − 6x3 − 2x2 + 6x ,  at x=3 4. −2x4 + x3 + 17x2 − x − 15,  at x=3 

 
Answers: 

1. y= –5x–17 2. y= 34x+48 
3. y= 48x–144 4. y= –88x+264 

 
The Increasing/Decreasing Concept 
The increasing/decreasing concept can be associated with the slope of the tangent line. 

1. At a point (at which f is defined) 
(j) If f ′(a) > 0, then f is increasing at x = a 
(k) If f ′(a) < 0, then f is decreasing at x = a 
2. On an interval (on which f is defined) 

1. If f ′(a) > 0 for all x in an interval, then f is increasing on the interval. 

Increasing Decreasing Increasing

 
2. If f ′(a) < 0 for all x in an interval, then f is decreasing on the interval. 

 
Example. If f(x) = x3 + x2, is increasing or decreasing at x = 5?  
Find the intervals on which f(x) is increasing or decreasing? 
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First Derivative Test 

• Let c be a critical number of f and let f be continuous on an interval containing c. Then (c, f (c)) 
is a relative maximum point provided that f ′ (x) > 0 is an interval to the left of c and f ′ (x) < 0 in 
an interval to the right of c. 

• Let c be a critical number of f and let f be continuous on an interval containing c. Then (c, f (c)) 
is a relative minimum point provided that f ′ (x) < 0 is an interval to the left of c and f ′ (x) > 0 in 
an interval to the right of c. 

Maximum
dy
dx

= 0

  A

  B

  C

   D

  E

Minimum

 

dy
dx

= 0

 
To find Maximum & Minimum Values: 
1) Find critical points ( ′ f (x)=0)   →    x value     
2) Substitute into f(x) 
 If ′ f (x)  changes     + →  –     Maximum value 
 – →  +     Minimum value 

 
Example. For   f(x) = x3 – x, find maximum and minimum values. 
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 f(x)

 f′(x)

 +  +

 –
 

(e) The derivative can be zero without there being a relative maximum or relative minimum. 
Example.   f(x) = x3 – 3x2 + 3x – 1 

     

 
 
Local Maxima and Minima 
Example. Find all local maxima and minima of the function g(x)=x3–9x2+24x–7 and sketch graph. 
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  2   3   4

 9

11

 13
(2, 13)

(4, 9)

  
 

x –∞ ... 2  3  4 ... +∞ 
′ g (x)  + 0 – – – 0 +  

g(x) –∞ ì 13 î 11 î 9 ì +∞ 
 
Concavity  
Concave up – if a curve lies above its tangent 
Concave down – if a curve lies below its tangent 
 

 P

 Concave up

 Concave down

 
Point of Inflection 
Any point at which the graph of a continuous function changes concavity  

Point of Inflection (P) = Concave up + Concave down 
• Relationship between ′ ′ f  (x)  and point of inflection 

′ ′ f (x)  = 0 in the point of inflection 

Conc ave
Up

Concave
Down

Point of
Inflection

Conc ave
Up

 
Exercise. Find the regions of concavity for f (x) =

1
3

x3 − 2x 2 + 3x + 2 
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10. Integration 
 
Indefinite integrals 
 
eg) Evaluate     x2∫ dx  using the TI–89 by following these steps  

[F3] 2   x2 , x , c ) Í 
The ,  x tells the calculator to integrate with respect to x 
The following should appear on your calculator screen. 

   
 
Exercise. 
Work out the answers to the following. 

1. x3∫ dx  2. 2x3 − 3 x2 + 5∫ dx  

3. x + 3( )∫ x −17( )dx  
4. 

2x2 − 4x( )
2x∫ dx  

Find an antiderivative for each of the functions: 

5. −
x 2

2x
 

6. − e−4 x  

7. 
tan 2 x − 1

sin x
 8. 

−2e−4 x −1
3e2 x  

 
Answers: 

1. 
x4

4
+ c  2. 

x4

2
− x3 + 5x + c  

3. 
x3

3
− 7x2 − 51x + c  4. 

x2

2
− 2x + c  

5. 
− 2x

5
2

5
+ c 

6. 
e−4 x

4
+ c 

7. 
cos x ln ( cos(x) + 1) − cos x ⋅ ln ( cos(x) − 1) + 2

2 cos(x)
+ c 

8. 
e−6x (3e4 x + 2)

18
+ c 
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Definite Integrals 
Evaluate the definite integral x2

0

2

∫ dx  by following these steps 

[F3] 2  x2 , x , 0 , 2 ) Í   
0 = lower limit    2 = upper limit 
The following should appear on your screen 

 
 
Exercise. Work out these definite integrals 

1. x3

0

3

∫ dx  2. 2x3

−2

1

∫ − 3x2 + 5dx  

3. (x
−3

17

∫ + 3)(x −17)dx  4. 
2x2 − 4x

2x1

4

∫ dx  

5. sin (x)dx
π
6

3π
2

∫  6. cos(x)dx
π
3

π
2

∫  

7. 
e−2x − 1

e3x

 
 
  

 − 1
2

0

∫ dx  
 

 
Answers:       

1. 
81
4

 2. 
−3
2

 3. 
−4000

3
 4. 

3
2

 

5. 
3

2
 6. 

− 3
2

+ 1 7. 
3e

5
2 − 5e

3
2 + 2

15
 

 

 
 
Definite Integrals as Areas 

A definite integral written as  f (x)dx
a

b

∫  finds the area between the curve f(x) and the x-axis, 

bounded by the lines x = a and x = b.   
x = a is called the lower limit and x =b is called the upper limit 
An alternative method to calculating definite integrals is to graph the function first and then use the 

f (x)∫ dx  facility. 

We write f (x)dx
a

b

∫  = F(x)[ ]a
b = F(b) – F(a) where F(x) is the antiderivative of  f(x) 

 

   
 

Area from a to b = F(b) – F(a) 

Total area is                f (x)dx
a

b

∫  = F(x)[ ]a
b

= F(b) – F(a) 

 

Follow these instructions to find this definite integral x + 2dx
2

5

∫ . 

This method uses the graph of f(x) to show the area represented by the integral and numeric 
integration to calculate it. 
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¥ [y=] x2 Í       [F2] 4     [F5] 7  
Note : Only the x value of the lower and upper limit needs to be typed in.  Ignore the y-value. 
The following should appear on your screen. 

     

     
Exercise  
Follow the above method to represent these integrals as areas between the curve and the x–axis and 
calculate an answer for the definite integral. Use   y1=  each time. 

1. x − 2
−2

2

∫ dx  2. x2

−3

0

∫ + 3xdx  

3. 
2

3

∫ (x + 3)(x − 2)dx  4. 4 − x 2

−2

2

∫ dx  

5. 4 − x2

1

3

∫ dx   

 
Answers:  
1. – 8  2. – 4.5  3. 2.8Ý 3   4. 10.67 
5. – 0.666667 
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Area between two functions  

Area = f (x) − g(x){ }
a

b

∫ dx  

 
Example 1. Find area between y = x + 1 and y = x2 – 1  

 
S = (x +1) − (x2 − 1){ }

−1

2

∫ dx  = − x2 + x + 2( )
−1

2

∫ dx  = 
9
2

 = 4.5 

For functions with complex intersections we can use f(x) − g(x)
a

b

∫ dx  

    

 

 
 
Example 2. Area between y = 2 + 4x – x2 and y = 2 
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S = 2+ 4x − x2( )− 2{ }dx
0

4

∫  = (4x − x2

0

4

∫ )dx  = 
32
3

 

  

  
 
Application 
Example. Compare (x − 2)2

2

4

∫ dx  and (x2 + 2)dx
0

2

∫  with x2

0

2

∫ dx   

    
 
Exercises. 
1. Find the area enclosed by the curve y = 25 − x2  and the x-axis.  Sketch the graph and shade in 
this enclosed region.  Write down the calculation you need to do to work out the area. 
Hint : Use ¥ [F2] to adjust the window range for y-max 
2. Find the area enclosed by the curve y = x2 − 4 x − 5  and the x-axis.  Sketch the graph and shade 
in this enclosed area.  What does the negative sign indicate? 
3. Find the area enclosed by the parabola y = (x − 2)2 , the x–axis and the line x=4. 
4. Find the area bounded by the curve y = x2 − x + 2  and the line y = 8. 
5. The function f(x) = x(x +1)(x–2)  

a)  Find the area bound by the curve, the x-axis and the lines x = –1 and  x =0. 
b)  Find the area bound by the curve, the x-axis and the lines x =0 and x = 2. 

c)  Calculate x(x + 1)(x − 2)
−1

2

∫ dx . 

d)  Explain why the answer to c) is not equal to the sum of the 2 areas found in a) and b). 
6. a) Using f(x) = –x3 + x2 + 2x and f(x–a) for a = 0, 0.5, 1, 1.5, 2 show that f (x − a)dx

a

1+a

∫  is 

constant, and find its value. 
b) Find a formula for ( f (x) + b)dx

0

k

∫  and demonstrate it graphically. 
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Answers:  

1. 25 − x2

−5

5

∫ dx  = 166.667 

 
 

2. x2 − 4x − 5( )
−1

5

∫ dx  = –36 

 Area = 36    Negative indicates the area is below the x-axis 

  
3. (x − 2)2

2

4

∫ dx  = 2.67 

 
4. Area = 8 − (x 2 − x + 2){ }

−2

3

∫ dx  = 20.8333 

  
5. a) 0.4167   b)  –2.667  c)  –2.25 

d) Integral does not always equal area.  Integrals can be negative.  Area is always positive. 
Area= 0.4167 + −2.667  =3.0837 

    

 
 
a) Define the function f(x) = –x3 + x2 + 2x and a = {0, 0.5, 1, 1.5, 2}. We can see that f(x–a) is 
transformed parallel to the x-axis. When we look at the f (x − a)dx

a

1+a

∫  along the diagonal of the 



 Ye Yoon Hong & Mike Thomas, Page 40 of 50 Introduction to TI-89 
The University of Auckland  

 results, then the values are all the same, that is; 
f (x − 0)dx =

0

1

∫ f(x − 0.5)dx =
0.5

1. 5

∫ f (x − 1)dx =
1

2

∫ f (x − 1.5)dx =
1. 5

2.5

∫ f (x − 2)dx
2

3

∫  =13/12=1.08. 

    

    

  
b) If we define the value of b = {0, 0.5, 1, 1.5, 2} then f(x) + b is represented by: 
–x3 + x2 + 2x, –x3 + x2 + 2x + 0.5, –x3 + x2 + 2x + +1, –x3 + x2 + 2x + 1.5, –x3 + x2 + 2x + 2.  
From ( f (x) + b)dx

0

k

∫  we can see that the values of 0.5k, k, 1.5k, 2k represent area of the extra  

rectangle that is created as shown below. 
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11. Matrices 
 
A matrix is simply a convenient way of storing data in an orderly number so that we know the exact 
position of any piece of data by reference to its row and column. 
A matrix is a rectangular array of numbers of the form: A matrix with m rows and n columns is 
called m × n 
 

a11 a12 .. a1n

a21 a22 ... a2n

... ... ... ...
am1 am2 ... amn

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 

The order of the matrix is determined by the number of rows and columns it contains. 
Example. Determine a 2 × 3 matrix and represent it as A. 
[3, –2, 5; 2, 4, -7] ¿ ƒ A  
Note: The colon (;) separates rows. 

 
 
Column matrix   Row matrix     Square matrix 
(e.g 2 × 1 matrix)    (e.g 1 × 3 matrix)    (e.g 3 × 3 matrix) 

                                  
 
Addition of Matrices 
Matrices are added by adding elements in corresponding positions. 
Matrices can only be added if they are of the same order. 

Example. If  A =
−2 3
5 −1

 

 
 

 

 
  and B =

3 −1
−4 2

 

 
 

 

 
 find A + B 

  
 

−2 3
5 −1

 

 
 

 

 
  +

3 −1
−4 2

 

 
 

 

 
 =

−2 + 3 3 + (−1)
5 + (−4 ) (−1) + 2

 

 
 

 

 
 =

1 2
1 1
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Multiplication of Matrices 
 
1. Multiplication by a Scalar 
To multiply a matrix by a (scalar) value we multiply every value in the matrix by that value. 

k
a b
c d

 

 
 

 

 
 =

ka kb
kc kd

 

 
 

 

 
  

Example. Find −2
1 −1 3
4 1 0

 

 
 

 

 
 . 

−2
1 −1 3
4 1 0

 

 
 

 

 
 =

−2 2 −6
−8 −2 0

 

 
 

 

 
  

2.  Multiplication of a Matrix by a Matrix 
• identify the position of the element in the product matrix; e.g. first row, second column 
• multiply the elements in the appropriate row in the first matrix by the corresponding 

elements in the same column of the second matrix. 
The product of two 2 × 2 matrices 

a b
c d

 

 
 

 

 
 ×

e f
g h

 

 
 

 

 
 =

ae + bg af + bh
ce + dg cf + dh

 

 
 

 

 
  

 

Example. If A =
2 −1 4

−1 1 3

 

 
 

 

 
  and B =

−2 1
0 −2
3 2

 

 

 
 
 

 

 

 
 
 
 find AB. 

Order of A = 2 × 3 and order of B = 3 × 2 so order of AB = 2 × (3    3) × 2 → 2 × 2 
• identify the position of the element in the product matrix; e.g. first row, second column 
• multiply the elements in the appropriate row in the first matrix by the corresponding 

elements in the same column of the second matrix. 

AB =
2 −1 4
−1 1 3

 

 
 

 

 
 ×

−2 1
0 −2
3 2

 

 

 
 
 

 

 

 
 
 

=
2 ⋅(−2) + (−1) ⋅ 0 + 4 ⋅3 2 ⋅1+ (−1) ⋅ (−2) + 4 ⋅ 2
(−1) ⋅(−2) + 1⋅ 0+ 3 ⋅3 (−1) ⋅1 + 1⋅(−2) + 3 ⋅2

 

 
 

 

 
 

                                              =
8 12
11 3

 

 
 

 

 
 

 

BA =
−2 1
0 −2
3 2

 

 

 
 
 

 

 

 
 
 

×
2 −1 4
−1 1 3

 

 
 

 

 
 =

(−2) ⋅ 2 + 1⋅ (−1) (−2) ⋅(−1) +1 ⋅1 (−2) ⋅ 4 + 1⋅ 3
0 ⋅ 2 + (−2) ⋅ (−1) 0 ⋅ (−1) + (−2) ⋅1 0 ⋅ 4 + (−2 )⋅ 3

3⋅ 2 + 2 ⋅ (−1) 3 ⋅ (−1) + 2 ⋅ 1 3 ⋅ 4 + 2 ⋅ 3

 

 

 
 
 

 

 

 
 
 

                                              =
−5 3 −5
2 −2 −6
4 −1 18

 

 

 
 
 

 

 

 
 
 

 

From this we see that AB ? BA and so matrix multiplication is not commutative. 
 

           

We need the multiplication sign (*) in AB and BA: A*B and B*A 
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Identity matrix 
This is defined as that matrix I for which 
   AI = IA = A 
This can only happen for n × n square matrices, with the same number of rows and columns (why?). 
Consider 

2 3
−4 2

 

 
 

 

 
 

1 0
0 1

 

 
 

 

 
 =

2 3
−4 2

 

 
 

 

 
  and 

1 0
0 1

 

 
 

 

 
 

2 3
−4 2

 

 
 

 

 
 =

2 3
−4 2

 

 
 

 

 
  

     
In general the identity matrix is that n × n matrix with 1s down the diagonal and zeros elsewhere. 
On the TI-89 this is obtained by : 

y 5 Option 4: Matrix ? 6: identity ( 2 ) Í 
then type n)  for an n × n identity. NB n must be a value! 

   
For example: 

 
Transpose 
The transpose AT  of a matrix A is a matrix formed by interchanging the rows and columns of A. 
[2, 3; –4, 2] ¿ a Í    a y 5 Option:4   Option:1 ( T )  Í 

2 3
−4 2

 
 
  

 

T
=

2 −4
3 2

 
 
  

 
 

 

−1 2 3
4 −3 2
5 5 −2

 

 

  

 

 
  

T

=
−1 4 5
2 −3 5
3 2 −2

 

 

  

 

 
   

    
Clearly (AT)T  = A 
And also  
 (A + B)T  = AT  + BT 

 (AB)T  = BT  AT note order! 
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Example 

A =
−1 2
3 4

 

 
 

 

 
 then  AT =

−1 2
3 4

 

 
 

 

 
 
T

=
−1 3
2 4

 

 
 

 

 
  

B =
3 −2
1 3

 

 
 

 

 
 then  BT =

3 −2
1 3

 

 
 

 

 
 
T

=
3 1
−2 3

 

 
 

 

 
  

BT AT =
3 −2
1 3

 

 
 

 

 
 
T −1 2

3 4

 

 
 

 

 
 
T

=
3 1
−2 3

 

 
 

 

 
 

−1 3
2 4

 

 
 

 

 
 =

−1 13
8 6

 

 
 

 

 
  

(AB)T =
−1 2
3 4( )3 −2

1 3( ) 

 
  

 

 
  

T
=

−1 8
13 6

 

 
 

 

 
 

T
=

−1 13
8 6

 

 
 

 

 
  

   

 

 
Determinant of Matrix 
 
For square matrices, of size n × n we can define a determinant, which will help us find its inverse. 
The determinant of a 2×2 matrix A: 

 
a b
c d

 

 
 

 

 
  

is written  
a B 
c D 

and is given by det A = ad – bc. 
On the TI-89 this is obtained by : 
 

y 5 Option:4 (Matrix)   
 Option:2 det ([a, b ; c , d] )Í 

 
Determinant can be used at the start of a problem on simultaneous equations to check for 
consistency. 
 
Example. Solve the following sets of simultaneous equations. 

a)  x + y = 4 b)  2x – y = 3  c)  4x – 3y = 12 
 2x + 2y = 6 4x – 2y = 6                               x – 2y = –2 

Sol) 
a) No Solution 

       
b) Infinitely many solutions 
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c)  Unique solution: x = 6 and y = 4 

        
For example  

–3 –2 
4 5 

= –15 – (–8) = –15 + 8 = –7 

 
The determinant of a 3 × 3 matrix A: 

a1 a2 a3

b1 b2 b3

c1 c2 c3

 

a1b2c3 + a2b3c1 + a3b1c2 – a3b2c1 – a2b1c3 – a1b3c2 = a1
b2 b3

c2 c3
− a2

b1 b3

c1 c3
+ a3

b1 b2

c1 c2
 

? Multiply the 3 numbers on each of the leading diagonals (from top left to bottom right): add 
together from this total, subtract the sum of the products on the other 3 diagonals. 

? 
b1 b2

c1 c2
, 

b1 b3

c1 c3
 and  

b1 b2

c1 c2
 are called minors . The minor of an element in a determinant is the 

determinant formed by omitting the row and column in which the element occurs. 
The cofactor of an element is its minor together with its sign. The signs for 3 × 3 matrix are 
+ − +
− + −
+ − +

. 

Co–factors  
The co–factor of an element in a determinant is the determinant of that the matrix obtained by 
removing the row and column containing the element from the original determinant, multiplied by 
+1 or –1 according to the position of the element, as below 
 

+ – + – 
– + – + 
+ – + – 
– + – + 

In general the sign is given by (–1)i+j where the value is in the ith row and the jth column. 
For example, remove the shaded cells below to get the cofactor values 
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 p   
    
    

Then the value of the determinant for an n × n matrix is given by 
 det A = a11C11 + a12C12 + a13C13 + . . . a1nC1n 

For example, given matrix A =
3 2 −1
1 6 3
2 −4 0

 

 

 
 
 

 

 

 
 
 

 

c11 = (−1)1+1 6 3
−4 0

=12,    c23 = (−1)2+3 3 2
2 −4

= 16 

 
Adjoint 
The matrix of the cofactors of the transpose of a matrix A: adj A 
 
Example. Evaluate the determinant, the cofactor and adjoint of matrix A 

A =
3 2 −1
1 6 3
2 −4 0

 

 

 
 
 

 

 

 
 
 

 

det A = (3×6×0 + 2×3×2 + (–1) ×1× (–4)) – ((–1) ×6×2 +3×3× (–4) + 2×1×0) = 64 
 
On the TI-89 this is obtained by : 
[3, 2, –1 ; 1, 6, 3; 2, –4, 0] ¿ a Í 
y 5 Option:4  (Matrix) Option:2  det ( a )Í 

 
 

Cofactor of matrix A = 

6 3
−4 0

−
1 3
2 0

1 6
2 −4

−
2 −1
−4 0

3 −1
−2 0

−
3 2
2 −4

2 −1
6 3

−
3 −1
1 3

3 2
1 6

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

=
12 6 −16
4 2 16
12 −10 16

 

 

 
 
 

 

 

 
 
 
 

adj A = 
12 4 12
6 2 −10

−16 16 16

 

 

 
 
 

 

 

 
 
 
 

 



 Ye Yoon Hong & Mike Thomas, Page 47 of 50 Introduction to TI-89 
The University of Auckland  

Inverses 
We define the inverse of a matrix A to be that matrix A–1 such that: 
    A A–1 = A–1A = In 
Where In is the n × n identity matrix. 
Thus only square matrices can have inverses. 

    

    

Inverses for 2×2 matrices 

For 2×2 matrices A =
a b
c d

 

 
 

 

 
  

    
 
To solve the simultaneous equations as a single matrix equation: 
Write the system of equation as a single matrix equation     

ax + by = c 
 cx + dy = f                becomes 
 

a b
c d

 

 
 

 

 
 

x
y

 

 
 

 

 
 =

e
f

 

 
 

 

 
  

If we let   A =
a b
c d

 

 
 

 

 
  

And A–1 be the inverse of A, then we can multiply both sides of equation 1 by A–1, giving 

A−1A
x
y

 

 
 

 

 
 = A−1 e

f

 

 
 

 

 
  

But A A–1 = I by definition 

So    I
x
y

 

 
 

 

 
 = A−1 e

f

 

 
 

 

 
  

And hence the solution is   
x
y

 

 
 

 

 
 = A−1 e

f

 

 
 

 

 
 ,  

where A−1 =
1

det A

d −b
−c a

 

 
 

 

 
 =

1
ad − bc

d −b
−c a

 

 
 

 

 
 . 

To solve simultaneous equations we multiply the number matrix by the inverse of the coefficient 
matrix, if it exists (if det A? 0). 
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If the matrix of coefficient is singular (the determinant ad – dc = 0), the simultaneous equations 
represent either two parallel lines or two lines which are coincident. 
 
Example: Solve the simultaneous equations 4x – 3y = 12 and x – 2y = –2. 

In matrix form: 
4 −3
1 −2

 

 
 

 

 
 

x
y

 

 
 

 

 
 =

12
−2

 

 
 

 

 
  

x
y

 

 
 

 

 
 =

4 −3
1 −2

 

 
 

 

 
 

−1 12
−2

 

 
 

 

 
 

     = 1
4 ⋅(−2) − (−3) ⋅1

−2 3
−1 4

 

 
 

 

 
 

12
−2

 

 
 

 

 
 

     = −
1
5

−2 ⋅12 +3 ⋅(−2)
(−1)⋅12 + 4 ⋅ (−2)

 

 
 

 

 
 

     = − 1
5

−30
−20

 

 
 

 

 
 

      =
6
4

 

 
 

 

 
 

   

   

So x = 6, y = 4 
 
Inverses for 3×3 matrices 

Use matrix methods to solve 
3x –y +2z = 13 
–x + 4y +2z= –1 

4y + 3z = 4 

Writing in matrix form: 
3 −1 2

−1 4 2
0 4 3

 

 

 
 
 

 

 

 
 
 

x
y
z

 

 

 
 
 

 

 

 
 
 

=
13
−1
4

 

 

 
 
 

 

 

 
 
 
 

To find the inverse of a 3×3 matrix we carry out the following steps. 

Given a matrix A, for example, A =
3 −1 2

−1 4 2
0 4 3

 

 

 
 
 

 

 

 
 
 

 

Step1. Define AT , the transpose of A 

AT =
3 −1 0

−1 4 4
2 2 3

 

 

 
 
 

 

 

 
 
 
 

Step 2. Obtain the adjoint matrix, written adj A, by replacing each element in the transpose of A by 
its cofactor, and by changing the sign of every second element. 

adj A =

4 4
2 3

−
−1 4
2 3

−1 4
2 2

−
−1 0
2 3

3 0
2 3

−
3 −1
2 2

−1 0
4 4

−
3 0
−1 4

3 −1
−1 4

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

=
4 11 −10
3 9 −8
−4 −12 11

 

 

 
 
 

 

 

 
 
 
 

Step 3. Find det A 
detA = (3×4×3 + (–1)×2×0 + 2×(–1)×4) – (2×4×0 + 2×4×3 + 3×(–1)×(–1)) = 36 – 8 – (24 + 3) = 1 
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A–1 = 
1

det A
⋅ adj (A) =

1
1

4 11 −10
3 9 −8

−4 −12 11

 

 

 
 
 

 

 

 
 
 
 

x
y
z

 

 

 
 
 

 

 

 
 
 

=
4 11 −10
3 9 −8

−4 −12 11

 

 

 
 
 

 

 

 
 
 

13
−1
4

 

 

 
 
 

 

 

 
 
 

=
1

−2
4

 

 

 
 
 

 

 

 
 
 

 

Thus x = 1, y = –2 and z = 4 

  
 
Systems of linear equations 

A solution to a system of linear equations gives the corresponding values of each of the variables 
that satisfy all the equations simultaneously. 
Solving Systems of Equations 
There are three things we can do to a system of equations which do not alter their solutions: 
 1. Interchange any two equations 
 2. Multiply any equation through by a constant (≠0) 

 3. Add a constant multiple (≠0) of any equation to any other equation. 
 
Gaussian Elimination 
 
When there are 3 equations – in x, y, and z – we start by eliminating the first variable (x) in the last 
2 equations and then eliminate the second variable (y) in the last equation. This leaves us with a set 
of equations in upper triangular form, or echelon form. 
Once the equations are echelon form, they can be solve by back substitution. 
The leading variable in each equation in the list falls further to the right each time. 
The rules become: 

1. Interchange any two rows 
2. Multiply any row through by a constant (≠0) 
3. Add a constant multiple (≠0) of any row to any other row. 

 
 
 
 
Example.  

3x –y +2z = 13…………R1 
–x + 4y +2z= –1……….R2 
4y + 3z = 4…………….R3 

The augmented matrix is: 
3 −1 2 13

−1 4 2 −1
0 4 3 4

 

 

 
 
 

 

 

 
 
 
 

 
To make echelonform,  
R1 + 3R2 

[3, –2, 2, 13 ; –1, 4, 2, –1 ; 0, 4, 3, 4] ¿ a Í 
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3 −1 2 13
0 11 8 10
0 4 3 4

 

 

 
 
 

 

 

 
 
 
 

–4R2 + 11R3 
3 −1 2 13
0 11 8 10
0 0 1 4

 

 

 
 
 

 

 

 
 
 
 

 
 

3x –y + 2z = 13 
11y + 8z= –1 

z = 4 
 
 
By back substitution, 
z = 4,  
11y + 8(4) = –1, so y = –2 
3x –(–2)+ 2(4) = 13, so x = 1 

y 5 Option:4 (Matrix)   J (Row ops) 3(mRow) 
 (3, a, 2) Í 
y  5 Option:4 J (Row ops)  4 (mRowAdd (1, ans(1), 1, 2) Í 

     
 

   

   

1 −
1
3

2
3

13
3

0 1
3
4

1

0 0 1 4

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

 

On the TI-89 this is obtained by: 
[3, –2, 2, 13 ; –1, 4, 2, –1 ; 0, 4, 3, 4] ¿ a Í 
y 5 Option  4 (Matrix)   3(ref)  ( a ) Í 

 
 


