Extension: Parallel Lines and the Sum of the Angles

- Press the CLEAR key to disengage the hand.

Draw a line parallel to segment $\mathbf{B C}$ through \mathbf{A}.

- Select the Parallel tool(F3).

- Select segment BC first, then select point A and press ENTER.

- Move the cursor to point \mathbf{A}, making sure the point at \mathbf{A} is flashing, and press ENTER to attach the parallel line to segment BC to A.
- Press CLEAR. Then press CLEAR again to disengage the Parallel tool.

- Press ALPHA and use the left arrow key to move point A horizontally along the parallel line.

- Move point A back right and then press CLEAR.

Display the measure of $<\mathbf{B A D}$ and $<\mathbf{C A E}$, where \mathbf{D} and \mathbf{E} are on the parallel line on opposite sides of point \mathbf{A}. You do not need to create the points \mathbf{D} and \mathbf{E} to measure the angles.

- Select Measure:Angle (F5).

- Press ENTER to select Measure:Angle.
- Move the cursor to a point on the parallel line left of A and press ENTER again.

A point is placed on the parallel line and is selected as the first point of your measurement. (We will place the label \mathbf{D} on it later.)

- Complete the measurement of the angle by selecting A (then pressing ENTER), then \mathbf{B} and pressing ENTER.

The hand will move the measure near \mathbf{A}.

- Place it in the interior of the angle.

Move the cursor to the right of A on the parallel line and press ENTER.

- Move the cursor to the right of \mathbf{A} on the parallel line and press ENTER.
- Select points \mathbf{A} and \mathbf{C} to complete the measurement. Move the measurement to the interior of the angle.
- Press ENTER to escape from the Measure tool.

- Move the measure of $<\mathbf{B}$ to the interior of the angle, move the measure of $<\mathbf{C}$ to the interior of the angle, and move the measure of $<\mathbf{A}$ to the interior of $<\mathbf{A}$.
- Use Alph-num (F5) to place \mathbf{D} and \mathbf{E} on corresponding points on the line through A.

Discuss the reasoning that could be used to prove that the sum of the measures of the interior angles of a triangle is $\mathbf{1 8 0}$ using the figure above.

