TI-Nspire Activity: Maryland Algebra H.S.A. Activity By: Edward C. Nolan

Activity Overview

In this activity, students work to solve various problems from the Maryland Algebra/Data Analysis High School Assessment (H.S.A.). These problems all are from the algebra strand. Students examine different ways to represent and solve nine different problems, some multiple choice, some constructed response.

Concepts

- Representing patterns with verbal models, tables, graphs, and equations
- Determining line of best fit and the meaning of the representation
- Interpreting values along the line of best fit
- Determining and finding meaning for the solution of a system of equations

Teacher Preparation

- This activity is presented in two versions - an instructional version (HSA Problems) and a review version (HSA Problems Soln). The students should have some background in algebraic skills for either approach, but the instructional version is designed to be lead by the teacher as a whole group presentation, as where the review version is designed for students to self-check their work individually or in small groups.

The Classroom.

- This activity is designed to be implemented as independent practice, small group work, or classroom presentation.

The Lesson

You will need either HSA Problems.tns or HSA Problems Soln.tns loaded onto each calculator and the HSA Problems worksheet for each student.

Option 1: Whole Class Instruction

The students will work through the problems with teacher guidance on a problem-byproblem basis. Using the HSA Problems.tns file, the teacher guides the students to create multiple representations, solve problems using multiple techniques, and answer each of the problems. See the end of the file or the HSA Problems worksheet for the problem set.

Answer Key

2007 10. J
12. $y=-201 x+809$

The slope of -201 means that for every year that the computer ages, the value decreases \$201.
A computer that is about 2.5 years old is worth $\$ 300$.
The model does not remain a good model for a 6-year-old computer because the value would be negative. This does not make sense for this context.
11. A
23. $y=150 x+250$
$y=-200 x+1650$

After 4 weeks, they both have $\$ 850$. You can see this because it is the point of intersection of the two equations.

2008 12. H
19. C
21. A
23. D
34. J

Option 2: Individual or Small Group Instruction

The students will work individually or in small groups. Using the HSA Problems Soln.tns file, students solve problems using multiple techniques and answer each of the problems. This file is set up for students to be able to self-check their work on each problem.

Assessment

Note: The option exists for the teacher to have each student work individually or in small groups using the HSA Problems.tns file. Students could save their work at the end of the class and the answers could be counted as a grade. This could be done by reviewing individual calculators or by collecting using Connect-to-Class.

Grade level: 6-10
Subject: Algebra I

Pages of the Activity [Solution version]

First, write the equation of the line of best fit.
Place the data on the next page (a
spreadsheet page) and then use the data to calculate the line of best fit. Do this using MENU/Statistics/Stat Calculations/Linear Regression ($\mathrm{mx} \mathrm{x}+\mathrm{b}$)

\section*{| 3.1 | 3.2 | 3.3 | 3.4 | RAD AUTO REAL |
| :--- | :--- | :--- | :--- | :--- |}

| Record the line of best fit |
| :--- | :--- |
| $y=-201 x+809$ |
| $y=-201 x+809$ |
| |
| |

2.6	2.7	2.8	2.9	RAD AUTO REAL

Remember, since the slope is -2 , each time x increases by $1, y$ decreases by 2 . Since one line of the table is $(-1,6)$, to increase x by 1 , we get 0 . When we increase \times by 1 , we decrease y by 2 . Therefore, the y-intecept is 4. Select the correct answer on the next page, then check your answer with MENU.

What is the slope of your equation?
What does the slope represent in the context of this problem?

What is the age of the computer when its value is $\$ 300$? Use mathematics to explain

\section*{	3.2	3.3	3.4	3.5	RAD AUTO REAL
What is the meaning of the slope of your					} equation (remember that the slope is the change in the dependent variable [value] compared to the change in the independent variable [age])?

\square

2.5	2.6	2.7	2.8
RAD AUTO REAL			

Next, examine the table for where the the y-intercept occurs. Remember, the y-intercept is where $x=0$. Use the information about the slope that you just discovered to help.

$y=\frac{1}{2} x-6$
$y=-\frac{1}{2} x-2$
$y=2 x-4$
$y=-2 x+4$
 What is the age of the computer when its value is $\$ 300$? Use mathematics to explain how you determined your answer. Use words, symbols, or both in your explanation.

Will your equation remain a good model to predict the value of a computer when it is 6 years old? Use mathematics to justify your answer.

\section*{| 3.2 | 3.3 | 3.4 | 3.5 | |
| :--- | :--- | :--- | :--- | :--- |}

change in the dependent variable [value] compared to the change in the independent variable [age])?
Slope shows that the value of the computer decreases $\$ 201$ every year.

Suggested Response:

The slope of -201 means that for every year that the computer ages, the value decreases $\$ 201$.

3.3	3.4	3.5	3.6	RAD AUTO REAL

solve $(300=-201 \cdot x+809, x) \quad$ 苗

Use the calculator page above and your line of best fit to calculate the age of the computer when its value is $\$ 300$.

3.5	3.6	3.7	3.8	
	RAD AUTO REAL			

$-201 \cdot 6+809$	$0 / 99$

Use the line of best fit and the calculator page above to make your prediction as to whether or not your model is a good fit for a
6-year-old computer.

| 3.7 | 3.8 | 3.9 | 4.1 | RAD AUTO REAL |
| :--- | :--- | :--- | :--- | :--- | :--- |

Public Release Version 2007, \#11
Mary is considering two job offers. Job A pays $\$ 8.00$ an hour and offers a one-time $\$ 100$ bonus. Job B pays $\$ 8.50$ an hour and offers a one-time $\$ 80$ bonus. How many hours would may have to work to earn the same amount of money at Job B as at Job A?

A third method would be to create a table of values for each of the equations and then look for when the two lists have a common value.

| 3.4 | 3.5 | 3.6 | 3.7 | RAD AUTO REAL |
| :--- | :--- | :--- | :--- | :--- | :--- | What is the age of the computer when its value is $\$ 300$?

3.6	3.7	3.8	3.9	RAD AUTO REAL

Will your equation remain a good model to predict the value of a computer when it is 6 years old? Use mathematics to justify your answer.
\square

We can solve this problem in many ways. Three ways would be using a graph to find the point of intersection graphically, creating two equations and finding their point of intersection algebraically, or creating a table of values for each job and comparing the amounts.

\section*{| 4.2 | 4.3 | 4.4 | 4.5 | RAD AUTO REAL |
| :--- | :--- | :--- | :--- | :--- | :--- |}

| 3.4 | 3.5 | 3.6 | 3.7 | RAD AUTO REAL |
| :--- | :--- | :--- | :--- | :--- | What is the age of the computer when its value is $\$ 300$?

About 2.5 years

Suggested Response:
A computer that is about 2.5 years old is worth $\$ 300$.

\section*{| 3.6 | 3.7 | 3.8 | 3.9 | RAD AUTO REAL | \square |
| :--- | :--- | :--- | :--- | :--- | :--- |
| years old? Use mathematics to justify your | $\mathbf{\wedge}$ | | | | |} answer.

No, the value of the computer is negative after 6 years, so the model doesn't work.

Suggested Response:

The model does not remain a good model for a 6-year-old computer because the value would be negative. This does not make sense for this context.

| 3.9 | 4.1 | 4.2 | 4.3 |
| :--- | :--- | :--- | :--- | :--- |

First, let's find the graphic point of intersection. Graph the lines, create an appropriate window, then use MENU/Points and Lines/Intersection Points to determine the coordinates of the point of intersection.

4.3	4.4	4.5	4.6
RAD AUTO REAL			

4.6	4.7	4.8	4.9
RAD AUTO REAL			

How many hours to earn the same amount of
money?
○ 40
○ 41
○ 420
○ 428

4.7	4.8	4.9
Public Release Version 2007 , $\# 23$		
At the beginning of the summer, Sarah has		
$\$ 250$. She takes a summer job and saves		
$\$ 150$ per week. Felicia has $\$ 1,650$ at the		
beginning of the summer. She travels during		
the summer and spends $\$ 200$ per week.		
Write an equation that represents the amount		
of money Sarah has at the end of each week.		

4.8	4.9	5.1	5.2
RAD AUTO REAL			

\qquad

Now create an equation for Felicia's spending over the summer. Remember that she started with $\$ 1,650$ and spent $\$ 200$ per week (does her total increase or decrease?).

| $y=-200 x+1650$ |
| :--- | :--- |
| Suggested Response: |
| $y=-200 x+1650$ |
| |
| 5.3 5.4 5.5 5.6 RAD AUTO REAL |

At the end of which week do Sarah and Felicia have the same amount of money? How much money do they have? Use mathematics to justify your answer.

\section*{| 4.8 | 4.9 | 5.1 | 5.2 | RAD AUTO REAL |
| :--- | :--- | :--- | :--- | :--- |}

Write an equation that represents the amount of money Felicia has at the end of each week.

Graph the two equations (Suggested graphing window: $0 \leq$ weeks $\leq 10 ; 0 \leq$
amount ≤ 2000.)

4.8	4.9	5.1	5.2	RAD AUTO REAL

Create an equation for Sarah's saving over the summer. Remember that she started with $\$ 250$ and adds $\$ 150$ repeatedly each week.
$y=150 x+250$

Suggested Response:
$y=150 x+250$

5.1	5.2	5.3	5.4	
RAD AUTO REAL				

Now graph each of your two equations on the next page. Remember to set your window at $0 \leq$ weeks ≤ 10 using x for weeks and $0 \leq$ amount ≤ 2000 using y for amount. Find their point of intersection.

\section*{| 5.3 | 5.4 | 5.5 | 5.6 | RAD AUTO REAL |
| :--- | :--- | :--- | :--- | :--- | :--- |}

have the same amount of money? How much money do they have? Use mathematics to justify your answer.
They both have $\$ 850$ after 4 weeks. The graph shows this as the point of intersection.

Suggested Response:
After 4 weeks, they both have $\$ 850$. You can see this because it is the point of intersection of the two equations.

4.8	4.9	5.1	5.2	RAD AUTO REAL

Graph the two equations (Suggested graphing window: $0 \leq$ weeks $\leq 10 ; 0 \leq$ amount ≤ 2000.)

At the end of which week do Sarah and Felicia have the same amount of money? How much money do they have? Use mathematics to justify your answer.

| 4.9 | 5.1 | 5.2 | 5.3 | RAD AUTO REAL |
| :--- | :--- | :--- | :--- | :--- | :--- |

Now create an equation for Felicia's spending over the summer. Remember that she started with $\$ 1,650$ and spent $\$ 200$ per week (does her total increase or decrease?).

5.5	5.6	6.1	6.2
RAD AUTO REAL			

Use the calculator page on the next page to calculate the answer. The equation is copied for your use.

5.6	6.1	6.2	6.3
RAD AUTO REAL			
solve $\left(-12=-39+\frac{3}{2} \cdot x, x\right)$			

$w=-39+\frac{3}{2} t(t=$ actual air temp. $)$
What is the actual air temperature if the wind-chill temperature is -12° ?

To answer this question, think about how much Marina has to start with and how much gets added over and over.
 Which expression below represents the total amount of money, in dollars, she (Marina) will have in her savings account in x weeks?

$$
\begin{aligned}
& \bigcirc 10(20+x) \\
& \bigcirc x(10+20) \\
& \bigcirc 10 x+20 \\
& \bigcirc 20 x+10
\end{aligned}
$$

| 7.1 | 7.2 | 7.3 | 8.1 | RAD AUTO REAL |
| :--- | :--- | :--- | :--- | :--- | Public Release Version 2008, \#21 Sean's movie rental company charges a monthly fee of $\$ 5.00$ plus an additional cost of $\$ 1.25$ per movie rental. Which of these equations represents the total monthly cost (c) of renting x movies?

7.2	7.3	8.1	8.2	RAD AUTO REAL

Which of these equations represents the total monthly cost (c) of renting x movies?

$$
0 c=1.25 x+5.00
$$

$\bigcirc \mathrm{c}=3.75 \mathrm{x}+5.00$
$\bigcirc \mathrm{c}=5.00 \mathrm{x}+1.25$
$\mathrm{c}=5.00 \mathrm{x}+3.75$

7.3	8.1	8.2	9.1	RAD AUTO REAL

Public Release Version 2008, \#23
William charges $\$ 4$ per hour to babysit.
LaRhonda charges $\$ 10$, plus an additional $\$ 2$
per hour to babysit. Both William and
LaRhonda work the same number of hours.
After how many hours will they earn the same amount of money?

9.4	9.5	9.6	9.7				

A third method would be to create a table of values for each of the equations and then look for when the two lists have a common value.

| 9.2 | 9.3 | 9.4 | 9.5 |
| :--- | :--- | :--- | :--- | :--- |
| The second muto REAL | | | |
| Thed would be to find the point | | | | of intersection of the two equations.

$\sqrt{9.8} 9.9$ 10.1 10.2 RAD Auto Real

Look at the graph and consider the slope (change in y divided change in x) and the y-intercept.

8.1	8.2	9.1	9.2
RAD AUTO REAL			

This problem is similar to an earlier one. We can solve this problem using a graph to find the point of intersection graphically, creating two equations and finding their point of intersection algebraically, or creating a table of values for each job and comparing the amounts.

| 9.7 | 9.8 | 9.9 | 10.1 | RAD AUTO REAL |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Public Release Version 2008, \#34
Look at the function that is graphed below.
What is the equation of this function?

8.2	9.1	9.2	9.3	RAD AUTO REAL

First, let's find the graphic point of intersection. Graph the lines, create an appropriate window, then use MENU/Points and Lines/Intersection Points to determine the coordinates of the point of intersection.

| 9.3 | 9.4 | 9.5 | 9.6 |
| :--- | :--- | :--- | :--- | solve $(4 \cdot x=2 \cdot x+10, x)$

LaRhonda) earn the same amount of money?
$\bigcirc 2$ hours
2.5 hours
4.5 hours

5 hours

| 9.9 | 10.1 | 10.2 | 10.3 | RAD AUTO REAL |
| :--- | :--- | :--- | :--- | :--- | Which of these equations represents this function?

$\bigcirc=\frac{1}{2} x-4$
$\mathrm{O}=\frac{1}{2} x+2$
$y=2 x-2$
$y=2 x+4$

