\qquad
\qquad

In this lesson, you will investigate the measures of angles and lengths of sides of triangles that have been rotated in different ways. Open the document: Rotations.tns.

It is important that the Rotations Tour be done before any Rotations lessons.

PLAY INVESTIGATE EXPLORE DISCOVER

Move to page 1.3. (ctri two times)
On the handheld, press and atrol to navigate through the pages of the lesson.
(On the $\mathrm{iPad}^{\circledR}$, select the page thumbnail in the page sorter panel.)

1. Press menu to open the menu.
(On the iPad ${ }^{\circledR}$, tap on the wrench icon
 to open the menu.)
Press 1 (1: Templates), 2 (2: Angles \& Sides).

2. Rotate $\triangle \mathrm{ABC} 45^{\circ}$ about point P (click on or press (Q).

Zoom
 in (\square) or out (\square) as needed.
a. Record the Original angle measures (first measures displayed) in the first row of the following table.
b. Investigate and mentally make note of Angle Measures by grabbing and moving each of the three vertices of $\Delta \mathrm{ABC}(\mathbb{A}, \boldsymbol{B}, \boldsymbol{C})$ to create different shaped triangles.
Record a set of data observed in row "Figure 1" in the following table.

Rotate $\mathbf{4 5}^{\circ}$	$m \angle A$	$m \angle B$	$m \angle C$	$m \angle A^{\prime}$	$m \angle B^{\prime}$	$m \angle C^{\prime}$
Original						
Figure 1						

c. Discuss observations in your group. Write a conjecture about the angle measures.
d. Click on \square or press \qquad to see the lengths of the sides of the triangles. Record the Original side lengths (first measures displayed) in the first row of the following table.
e. Investigate and mentally make note of Side Lengths by grabbing and moving each of the three vertices of $\triangle \mathrm{ABC}(\mathbb{A}, \mathbf{B}, \mathbf{C})$ to create different shaped triangles.
Record a set of data observed in row "Figure 1" in the following table.

Rotate 45	$\bar{\circ}$	$\overline{A B}$	$\overline{B C}$	$\overline{C A}$	$\overline{A^{\prime} B^{\prime}}$	$\overline{B^{\prime} C^{\prime}}$
Original			$\overline{C^{\prime} A^{\prime}}$			
Figure 1						

f. Discuss observations in your group. Write a conjecture about the lengths of the sides.
3. Reset the page. Press Reset (ctrl dell).

Repeat what was done in exercise 2, but with each person in the group doing a different rotation. Each person in the group should choose one from the following:
i) Rotate $\triangle \mathrm{ABC} 60^{\circ}$ about point P.
iii) Rotate $\triangle \mathrm{ABC}-60^{\circ}$ about point P.
ii) Rotate $\triangle \mathrm{ABC} 90^{\circ}$ about point P.
iv) Rotate $\triangle \mathrm{ABC}-45^{\circ}$ about point P.
(Note: to change the angle of rotation, click on $6^{\circ} 45^{\circ} \checkmark$ or press E to open the menu, and press the space bar (\square) to select that measure and to close the menu.)
Rotate $\triangle \mathrm{ABC}$ about point P (click on \wp or press \mathbf{Q}).
a. Record the Original angle measures (first measures displayed) in the first row of the table below.
b. Investigate and mentally make note of Angle Measures by grabbing and moving each of the three vertices of $\triangle \mathrm{ABC}(\mathbb{A}, \mathbf{B}, \boldsymbol{C})$ to create different shaped triangles.
Record a set of data observed in row "Figure 1" in the following table.

Circle: i ii iii iv	$m \angle A$	$m \angle B$	$m \angle C$	$m \angle A^{\prime}$	$m \angle B^{\prime}$	$m \angle C^{\prime}$
Original						
Figure 1						

c. Discuss observations in your group. Is your conjecture about the angle measures still true?
d. Click on or pressto see the lengths of the sides of the triangles.

Record the Original side lengths (first measures displayed) in the first row of the table below.
e. Investigate and mentally make note of Side Lengths by grabbing and moving each of the three vertices of $\triangle \mathrm{ABC}(\mathrm{A}, \mathrm{B}, \boldsymbol{C})$ to create different shaped triangles.
Record a set of data observed in row "Figure 1" in the following table.

Circle: i ii iii iv	$\overline{A B}$	$\overline{B C}$	$\overline{C A}$	$\overline{A^{\prime} B^{\prime}}$	$\overline{B^{\prime} C^{\prime}}$	$\overline{C^{\prime} A^{\prime}}$
Original						
Figure 1						

f. Discuss observations in your group. Is your conjecture about the lengths of the sides still true?
4. Many different triangles have been rotated in several directions.

Generalize explorations and investigations by responding to the following:
a. If a triangle is rotated about a point through an angle, what appears to be true about the measures of the angles of the pre-image and image triangles?
b. If a triangle is rotated about a point through an angle, what appears to be true about the lengths of the sides of the pre-image and image triangles?
5. Because the corresponding angles and the corresponding sides of the pre-image and image triangles are congruent, the triangles are congruent.
Therefore, a rotation is a rigid motion, or an isometry.
We also say that a rotation is a distance-preserving and an angle-preserving transformation.
6. $\triangle D E F$ has been rotated 75° about a point. Answer the following.
a. If $m \angle D=55^{\circ}, m \angle D^{\prime}=$ \qquad .
b. If $E F=9 \mathrm{~cm}, \mathrm{E}^{\prime} \mathrm{F}^{\prime}=$ \qquad .
c. If $m \angle E=110^{\circ}$, which other angle has a measure of 110° ? \qquad
d. If $\mathrm{DF}=4 \mathrm{in}$, which other segment has a length of 4 in ? \qquad

