## 9. INTRODUCING STATISTICS: MOBILE REGRESSIONS

In this activity, you will explore some of the possibilities available for learning and teaching with an integrated technological partner! Not only is it quick and easy to compute and plot regressions, but the linked representations available within TI-Nspire ${ }^{T M}$ CAS learning technology make it a powerful tool for building a deep and lasting conceptual understanding of the principles and processes involved.

This activity was originally developed by Dr. Charles Vonder Embse from Central Michigan University.
Beginning with a new document and a Graphs \& Geometry page, first hide the Entry Line by pressing © ctri) + (G). Choose Zoom - Quadrant 1 from the Window menu, and use the Point tool (:) from the Points \& Lines menu to place five free points in the first quadrant. To label a point, simply type a label immediately after placing the point (and before placing the next point).

Use the Coordinates \& Equations tool (y][ix) (MENU > Tools > Coordinates \& Equations) to show the coordinates of each point. After labeling the points in this way, you can doubleclick on each coordinate to assign a specific value to it. (It is helpful to "fix" the number of decimal places in each value, thus freeing up space on the screen.)

Click once on any $x$-coordinate to select it. Open the Variables menu by pressing \{ sian (or by pressing ©trr + (L)) and Store each of the $x$ - and $y$-coordinates in turn as ( $\mathbf{x a}, \mathbf{y a}$ ), $(\mathbf{x b}, \mathbf{y b}),(\mathbf{x c}, \mathbf{y c})$, etc.

Check that as you move your points, their coordinates change to reflect their new positions. You may then hide the coordinates by using the Hide/Show tool (\%) (MENU > Tools > Hide/Show).


Figure 9.1: Dropping Some Points


Figure 9.2: Storing Coordinates as Variables

Now insert a new Lists \& Spreadsheet page. With cell A1 selected, press ctrl + (L) to access the variables menu and Link To the variable xa. Repeat this process, storing each of the $x$-variables in Column A and each of the corresponding y-variables in Column B. When completed, each cell should appear gray to show that it contains a linked value.

Select Columns $A$ and $B$ by using MENU $>$ Actions > Select and the SHIFT key. Now perform a linear regression of the form $y=m x+b$ by choosing MENU > Statistics > Stat Calculations > Linear Regression $(m x+b)$. Columns A and B will already be entered as the X and Y Lists; enter " d[] " for the "1st Result Column" and press 㼧解.

The statistical variables from this computation are deposited in Columns D and E. Since we are planning for several regressions, we will store these under other names to avoid writing over the key variables.

As displayed in Figure 9.4, copy the slope (m) and $y$-intercept (b) into new cells and store them. To do so, simply type "=E3" into F3. Similarly, copy the contents of cell E4 into F4. Open the Variables menu (ctri) + (L)) and Store these two values as $\mathbf{I m}$ and $\mathbf{l b}$.

Return to the Graphs \& Geometry page and enter the equation $\mathbf{I m}^{*} \mathbf{x}+\mathbf{l b}$ as $\mathbf{f} 1(\mathbf{x})$. (Press ©trl) + (G) to show/hide the Entry Line as needed.) After this line has been graphed, you may wish to use Hide/Show to hide its label.

Moving any of the points $A$ through $E$ will cause changes in the regression line to fit.

Now go back and create more regression lines in the same manner, such as a Median and a Quadratic regression and observe the ways in which various positions of the points affect each regression!


Figure 9.3: Linking to Variables from L\&S

| 1.1 | 1.2 |  |  | Auto real | $\square$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | D | E | ล |
| - |  |  |  | $=$ LinRegM |  |
| $1 \quad 1.4$ | 3.4 |  | Title | Linear ... |  |
| $2 \quad 4.2$ | 7.1 |  | Reg... | $m^{*} \times+b$ |  |
| $\begin{array}{ll}3 & 9.7\end{array}$ | 2.1 |  | m | . 143342 | . 143342 |
| 411.4 | 9.9 |  | b | 4.37893 | 4.37893 |
|  | 5.2 |  | $\mathrm{r}^{2}$ | . 057379 |  |
| 6 |  |  |  | مתana | $v$ |
| F3 \| Im: $=$ e3 |  |  |  |  |  |

Figure 9.4: Storing Regression Values


Figure 9.5: A Mobile Regression Line!

