One Sided Limits

\qquad
Class \qquad

Set up - graphing piecewise functions that show discontinuity.

1) After turning on your device, go to the $Y=$ screen by pressing © \mathbb{F}.
2) Turn the functions off or clear them; press F1 > Clear Functions.
Note: You can turn functions off by un-checking them using F4.

3) Turn Discontinuity Detection on. Press F1 > Format to find the option for Discontinuity Detection.
4) Set the window, using [F2, to the settings shown at the right.
5) Back on the $Y=$ screen enter three piecewise functions.

人mir=-1吕,		
$\times \mathrm{Ma} \times 10$		
$x \leq c 1=1$		
- mir= -		
피지=8.		
볻 $=1$		
MABl\|	Find mprind	FUNC

At $y 1$ press ENTER. Find when(in the CATALOG quickly by pressing CATALOG \square. This shows the notation: when(condition, true, false)

For $y 1$, type when $(\mathbf{x}<\mathbf{1}, \mathbf{1}, \mathbf{a}) \mid \mathbf{a}=\mathbf{5}$
The "such that" bar key (\square) is to the left of the 7 key.

For $y 2$, type when $\left(x<1, x+2, \mathbf{a}^{*} \mathbf{x}^{\wedge} \mathbf{2}\right) \mid \mathbf{a}=5$

For $y 3$, type when $(x<2,2 \sin ((x-1) \pi / 2)$, $a+3 \sin ((x-4) \pi / 2)) \mid a=5$

$$
\begin{aligned}
& y 1(x)=\left\{\left.\begin{array}{l}
1, x<1 \\
a, x \geq 1
\end{array} \right\rvert\, a=5\right. \\
& y 2(x)=\left\{\left.\begin{array}{l}
x+2, x<1 \\
a \cdot x^{2}, x \geq 1
\end{array} \right\rvert\, a=5\right. \\
& y 3(x)=\left\{\left.\begin{array}{ll}
2 \sin \left((x-1) \frac{\pi}{2}\right) & , x<2 \\
a+3 \sin \left((x-4) \frac{\pi}{2}\right), x \geq 2
\end{array} \right\rvert\, a=5\right.
\end{aligned}
$$

6) Graph one function at a time by using [F4 to have only one function checked at a time.

On a graph screen examine both sides of where the discontinuity exists using F3 Trace.
7) For Problems 1 and 2 below, use $\square 4$ to have table settings of tblStart $=0.98$ and $\Delta \mathrm{tbl}=0.01$, to numerically examine the left and right-hand limits. Be sure to press ENTER to save changes before pressing ©5 to view the table.

One Sided Limits

For Problems 1, 2, and 3 estimate the limits graphically and numerically using trace and table.

Problem 1

$y 1(x)=\left\{\left.\begin{array}{l}1, x<1 \\ a, x \geq 1\end{array} \right\rvert\, a=5\right.$

$$
\lim _{x \rightarrow 1^{-}} y 1(x) \approx
$$

$\lim _{x \rightarrow 1^{+}} y 1(x) \approx$ \qquad
Try other values for \boldsymbol{a} in the graph of $y 1(x)$ to find what a makes $\lim _{x \rightarrow 1} y 1(x)$ exist. On the $Y=$ screen, press ENTER when y1 is highlighted. Press and then backspace \square to try different values for \boldsymbol{a}. Graph it to see if appear continuous.

$$
a=
$$

\qquad

Problem 2

$$
y 2(x)=\left\{\begin{array}{ll}
x+2, x<1 \\
a \cdot x^{2}, x \geq 1
\end{array} \quad \lim _{x \rightarrow 1^{-}} y 2(x) \approx\right.
$$

Try other values for \mathbf{a} in the graph of $y 2(x)$ to find what a makes $\lim _{x \rightarrow 1} y 2(x)$ exist.

$$
a=
$$

\qquad
Show calculations of the left hand limit and the right hand limit to verify that your value for a makes the limit exist.

Problem 3

$$
y 3(x)=\left\{\begin{array}{lll}
2 \sin \left((x-1) \frac{\pi}{2}\right) & , x<2 & \lim _{x \rightarrow 2^{-}} y 3(x) \approx \\
a+3 \sin \left((x-4) \frac{\pi}{2}\right), x \geq 2 & \mid a=5 & \lim _{x \rightarrow 2^{+}} y 3(x) \approx
\end{array}\right.
$$

Try other values for \mathbf{a} in the graph of $y 3(x)$ to find what a makes $\lim _{x \rightarrow 2} y 3(x)$ exist.

$$
a=
$$

\qquad
Show calculations of the left hand limit and the right hand limit to verify that your value for a makes the limit exist.

One Sided Limits

Extension - Continuity

A function is continuous at $x=c$ if:

- $f(c)$ exists
- $\lim _{x \rightarrow c} f(x)$ exists, and
- $\lim _{x \rightarrow c} f(x)=f(c)$

Use CAS to algebraically solve for a that makes
(a) $\lim _{x \rightarrow 1} y 2(x)$ exist
(b) $\lim _{x \rightarrow 2} y 3(x)$ exist

Then prove each function is continuous.

Key press help:

- Begin by pressing HOME. Clean Up the screen by pressing [2nd F1. Choose NewProb and press ENTER to put this on the command line and ENTER to execute the command.
- Type $\mathbf{y 2} \mathbf{2} \mathbf{x}$) ENTER. The Define command is under the F4 menu. Type Define $f(x)=$, then up arrow to highlight the output from the previous line. Press
 ENTER on the highlighted piecewise function to copy it down to the command line.
- To solve a right sided limit, press F6 > limit(. On the command line enter $\operatorname{limit}(\mathbf{f}(\mathbf{x}), \mathbf{x}, \mathbf{1}, \mathbf{1})$ ENTER.
- Now, press F2 ENTER to select solve(. Then up arrow to select the input from the previous line, press ENTER. Next type \square. Up arrow to the input again and press ENTER. This time put a negative $(--)$ in front of the last 1. Finally type \square alpha \square and close the parentheses. This method will enable you to quickly enter solve($\operatorname{limit}(f(x), x, 1,1)=\operatorname{limit}(f(x), x, 1,-1), a)$.

