mprod 1 cition to the 7 T.89 for Beginners

Imerenation Tal Teachers Teaching with Tecchnology
Coumbus, OH
March 17,2001
1:30. $3: 00 \mathrm{PM}$
Harisoon
Charles Hommann
Lasalle University
Monisgomery County Community colest
Dr. Charles Hofmann, LaSalle
hofmann@lasalle.edu
Dr. Roseanne Hofmann, MCCC
rhofman@mc3.edu

DISPLAY CONTRAST

To increase the contrast, hold down the green diamond key ($\boldsymbol{*}$) and the + sign To decrease the contrast, hold down the green diamond key () and the - sign

LAYOUT OF THE KEYBOARD

Many keys on the calculator have more than one function:
a) what is written on the key in white lettering (just press the key)
b) what is written above the key in green lettering (press green diamond located row 3, column A)
c) what is written above the key in yellow lettering (press 2nd, located row 2, column A)
d) what is written above the key in purple lettering (press alpha, row 3, column B)
e) the $\widehat{\text { © }}$ (shift or up arrow key, row 2 , column B) is used to capitalize a letter.

Function keys (8 of them F1-F8) below the calculator screen.
Special keys:

- green diamond key (row 3, column A, shortcut for $\mathrm{Y}=$, Window, Graph, TblSet, Table, Cut, Copy, Paste, \approx, Del)

2nd yellow key (row 2, column A, access to functions printed in yellow above the key)

Four Cursor keys (left, right, up, down arrow keys)
ENTER keys (row 10, column E)
ESC key (row 2, column C)

LAYOUT OF SCREEN

LAYOUT OF SCREEN

The top row is the Toolbar for the F1-F6 keys
The next area, called the "History Area," may show up to 5 rows of print; keeps a record of your entry/answer pairs
The Entry line is between two horizontal lines.
Below the entry line is the Status Line - current state of your calculator.

SETTINGS

To clear the home screen, press F1 and choose \#8:Clear Home, press CLEAR if there is something on the insert line. For this worksheet, change the MODE (row 4, column B) settings of your calculator to look like the screen below. Press ENTER to select what you have highlighted. Press ESC to return to the home screen.

Exact: Any result that is not a whole number is displayed in a fractional or symbolic form ($2 / 3, \pi / 4,2 \sqrt{ } 2$)
Approximate: All numeric results, where possible, are displayed in floating-point (decimal) form.
Auto: Uses Exact form where possible, but uses the Approximate form when entry contains a decimal point.
Accuracy: Floating-point decimal values in memory are stored using up to 14 digits with a 3digit exponent. Integer values in memory are stored using up to 614 digits. The $\mathrm{TI}-89$ carries more digits internally than it displays.

OPERATIONS

2+3*4, ENTER
$2+3 * 4$., ENTER (notice a decimal in one number of the expression determines that the answer will be printed with a decimal point)

Factorial, Factor, Expand, Solve, Zeros Commands
20 ! can be entered two ways. One way, using the MATH key and 7: Probability menu 1: !, a second way using the short cut. To find the short cut for !, activate the keyboard map with K. Note that factorial is \div.

A choice was made not to clutter the keyboard with all the special characters.
Factor the answer given for 20! Either type the word "factor", or under the F2:Algebra menu, select $2:$ factor(, or press CATALOG (row 4 column C) select factor(by pressing ENTER once it is highlighted in the list. In the Entry line, type factor(ans(1)). Note ans and entry are found over the (-) and ENTER keys.

$\begin{array}{\|c\|c\|} \hline F 17 \\ \hline 50015 \end{array}$	
- 20: 2432902008176640000	
factor(24329020081766400.	
Miln	BAD Allid Func 1/30

Expand $(x+y)^{5}$, then factor the expansion! To expand this expression in general, use the with (I)command (row 7, column A) with $\mathrm{n}=3$, then 4 , etc. A list can be used to do multiple expansions in the same command.

(Fit	F17
$\begin{aligned} & \operatorname{expand}\left((x+y)^{n} \mid n=3\right) \\ & \quad x^{3}+3 \cdot x^{2} \cdot y+3 \cdot x \cdot y^{2}+y^{3} \end{aligned}$	$\begin{aligned} & \text { - expand }\left((x+y)^{n} \mid n=3\right) \\ & \quad x^{3}+3 \cdot x^{2} \cdot y+3 \cdot x \cdot y^{2}+y^{3} \\ & \text { expand }\left((x+y)^{n} \mid n=63 \quad 4\right. \\ & 1+y^{3} \quad x^{4}+4 \cdot x^{3} \cdot y+6 \cdot x^{2} \end{aligned}$
expand ($(x+y)^{\wedge} n \mid n=(3,4,5)$)	expand ($(x+4)^{\wedge} n \mid n=\{3,4,55)$
MAIN SADD AUTO FUNC 1/30	MAIN EAAD AUTD FUNC $1 / 2$
- factor $\left(x^{2}-2\right)$ $x^{2}-2$ - factor $\left(x^{2}-2, x\right)$ $(x+\sqrt{2}) \cdot(x-\sqrt{2})$	
factor $\left(x^{\wedge} 2-2, x\right)$ MAIN AUTO FUNC $2 / 30$ RAIN	

Notice how the TI-89 factors $\mathrm{x}^{2}-4, \mathrm{x}^{2}+4, \mathrm{x}^{2}-2$. By placing the variable after the expression, the expression is factored as much as possible toward real factors that are linear, even if it introduces irrational constants. A "cFactor" was necessary before factoring complex roots.

$$
x=-\sqrt{-b} \text { or } x=\sqrt{-b}
$$

$$
\text { - cSolve }\left(a \cdot x^{2}+b \cdot x+c=0, x\right)
$$

$$
x=\frac{\sqrt{b^{2}-4 \cdot a \cdot c}-b}{2 \cdot a} \text { or } x=-
$$

$$
x=-\sqrt{-b} \text { or } x=\sqrt{-b}
$$

$$
\text { - cSolve }\left(a \cdot x^{2}+b \cdot x+c=0, x\right)
$$

csolve($\left.a * x^{\wedge} 2+b * x+c=0, x\right)$
MAIN FAD AUTD FUNC $5 / 30$

- zeros $\left(a \cdot x^{2}+b \cdot x+c, x\right)$
$\begin{cases}\frac{-\left(\sqrt{b^{2}-4 \cdot a \cdot c}+b\right)}{2 \cdot a} & \sqrt{b^{2}-} \\ \frac{\text { zeros }}{\text { MAIN }} \frac{\left.3 * x^{\wedge} 2+b * x+c, x\right)}{\text { FAD AUTD }} \quad & \\ \text { FUNC } & 1 / 30\end{cases}$

Solving Linear Equations Showing All the Steps

- $(2 \cdot x-5=6 \cdot x+$			
1) $-6 \cdot x$			
= 11			
(2*x=6*x+11)-6x			
IN Rind muta	FUN		

Exploring Repeating Decimals

- NewProb Done	-
- $\mathrm{n}=3.1616161616161$	$100 \cdot n=316.161616162$
$n=3.16161616162$	-100. $\mathrm{x}-\mathrm{x} \quad 99 \cdot n=3$
00	- solve($99 \cdot n=313, n)$
$100 \cdot n=316.161616162$	- solve(99 n = 313, ${ }^{\text {a }}$
- $100 \cdot x-x \quad 99 \cdot n=313$.	99
99*n=312.99999999999	solve(99*r=313,n)
MAlN EAD AUTO FUNC 4/30	MAIN SAAD AUTO FUNC 5/3
- NewProb Done	$\mathrm{n}=.121212121212$
. $12121212121212 \rightarrow \times$	
12121212121	121212
- $100 \cdot \times$	$0 \cdot x-x \quad 99 \cdot n=12$
$00 \cdot n=12.1212121212$	- solve(99
- $100 \cdot \mathrm{x}-\mathrm{x} \quad 99 \cdot \mathrm{n}=12$.	4/33
$99 * n=12.1$	solve(99*n=12,n)
MAIN EADD AUTO FUNC	MAIN SAD AUTO FUNC 5/30

Try $\mathrm{n}=1.23555555$...

Partial Fraction Expansion		
$\left\lvert\, \begin{aligned} & \text { - expand }\left(\frac{x^{2}}{(x-1)^{2} \cdot\left(x^{2}-4\right)}\right) \\ & \frac{-1}{9 \cdot(x+2)}-\frac{8}{9 \cdot(x-1)}-\frac{}{3 \cdot(x)} \end{aligned}\right.$	$\begin{aligned} & \text { - expand }\left(\frac{x^{2}}{(x-1)^{2} \cdot\left(x^{2}-4\right)}\right) \\ & \frac{8}{(x-1)}-\frac{1}{3 \cdot(x-1)^{2}}+\frac{1}{x-2} \end{aligned}$	
(Tit)		
$\text { - } \begin{array}{r} \\ \frac{2 \cdot \operatorname{com} \operatorname{Denom}\left(\frac{1}{x}+\frac{1}{x+1}\right.}{x^{2}+x} \\ \hline \end{array}$	$\begin{aligned} & \text { comDenom }\left(\frac{1}{x}+\frac{x}{x+1}\right) \\ & \\ & \frac{2 \cdot x+1}{x^{2}+x} \\ & -\operatorname{expand}\left(\frac{2 \cdot x+1}{x^{2}+x}\right) \\ & \frac{1}{x+1}+\frac{1}{x} \end{aligned}$	- expand $\left(\frac{2 \cdot x+1}{x^{2}+x}\right)$ $\frac{1}{x+1}+\frac{1}{x}$ - factor $\left(\frac{2 \cdot x+1}{x^{2}+x}\right)$ $\frac{2 \cdot x+1}{x \cdot(x+1)}$

Notice if the degree of the numerator is lower than the degree of the denominator, the same fraction returns; if the degree of the numerator is the same degree as the denominator, or higher than the degree as the denominator, then the partial fractions are returned.

Solve $3^{x}=x^{3}$

Trigonometric Equations

$$
x=\left\{\begin{array}{lll}
\frac{5 \cdot \pi}{4} & \frac{9 \cdot \pi}{4} & \frac{13 \cdot \pi}{4}
\end{array}\right\}
$$

$$
\text { - solve }\left[(\tan (x))^{2}+1=\frac{1}{(\cos ()}\right.
$$

$$
\left..(x))^{\wedge} 2+1=1(\cos (x))^{\wedge} 2, x\right)
$$

Note that @n1 in the example above represents the first arbitrary integer that has appeared in this session. To evaluate some of the answers, highlight and paste the answer in the entry line and use the with | operator (row 7, column A) to assign a list of values to @n1. Use STO to get the @ symbol.
The Solve command returns "false" if no real solutions are found, "true" when solve can determine that any finite real value of variable satisfies the equation or inequality.

A useful function for simulations.

The function will be called randint(lower, upper, number)

Random Polynomial

To generate a polynomial with random integer coefficients between -9 and 9 , select the MATH key (row 8, column C), then 7:Probability, then 6:RandSeed. After seeding the random number generator, go back to that same menu and choose 8 :randPoly(, make the random polynomial of degree 5 in the variable x. The function can then be differentiated.
The roots can be found for both the first and second derivative.

MAIN	FAD AUTI	FUNC	$0 / 30$
$\begin{aligned} & \times m \text { in }=-5 . \\ & \times m a \times=5 . \\ & \times s c l=1 \\ & y m i n=-10 . \\ & y m a x=10 . \\ & 9 s c l=1 . \\ & \times r e s=2 . \end{aligned}$			
MAIN RAD Allta FUNC			
$\overline{\mathrm{Fin}}$	F3v F47	$\overline{510} 5$	

- $\frac{d}{d x}(f(x))$
$-5 \cdot x^{4}-4 \cdot x^{3}+12 \cdot x^{2}+8 \cdot x$
$\alpha^{\prime}(f(x), x)$
MAIN
F17 F27 F3T F4T F5 F6\%
Tobls A198bra Galc $d x^{2}$

$$
-20 \cdot x^{3}-12 \cdot x^{2}+24 \cdot x+8
$$

$$
\text { - zeros }\left(-20 \cdot x^{3}-12 \cdot x^{2}+24\right)
$$

MAIN	Ríd Alta	FUNC	9/30

Each of the derivatives may be stored in $\mathrm{y} 2(\mathrm{x})$, and $\mathrm{y} 3(\mathrm{x})$. Choose different style to graph the functions.

New Example - System of Equations

Ticter	
- NewProb	Done
- $3 \times 4+4=17$	$3 \cdot x+4 \cdot y=17$
- $2 \cdot x-3 \cdot y=10$	
$2 x-3 \mathrm{l}=10$	$x-3$
MAlN ${ }_{\text {RAD }}$	FUNC $\quad 3 / 30$

- solve($2 \cdot x-3 \cdot y=10, y) \mid x \Rightarrow$	
$\text { - } \left.x=\frac{-(4 \cdot y-17)}{3} \right\rvert\, y=4$	$\begin{aligned} & y=4 / 17 \\ & =4 / 17 \end{aligned}$
	$x=91 / 17$
$x=-(4 * y-17) / 31 \mathrm{y}=4 / 17$	17
MAlN RiAd Aluto Func	UNC 6\%

Converting from One Unit to Another

Convert Units of Measure

Convert a Temperature Value

hofmann@lasalle.edu
hofman@mc3.edu
Web Site: www.mc3.edu/gen/faculty/RHOFMANN

Two Variable Statistics Example:

Mrs. O purchased a item in 1955 for $\$ 1200$. Its value was $\$ 1800$ in 1960, $\$ 2500$ in 1965, and $\$ 3100$ in 1970. If the value of the item were to appreciate according to the same pattern through 2000, estimate the value of the antique in the year 2000. Input the following data and fit a curve.
Go to the application key (APPS), choose 6:Data/Matrix Editor, choose 3:New from the submenu. Input the years in c1, input the value of the items in c2. Choose F5:Calc. Under the Calculation Type, choose 5:LinReg. For the x catagory, input c1, use c2 for y. At the Store RegEQ submenu, choose $\mathrm{y} 1(\mathrm{x})$. Press ENTER to keep all the selections made. Notice the box with the regression equation and the correlation coefficient. Press F2 Plot Setup, then press F1 Define. Choose Scatter for Plot Type; Cross for Mark; c1 for x, and c2 for y. Press ENTER. Make sure all other plots are turned off as well as all functions, other than y1(x). Choose 9:ZoomData from F2 Zoom menu. To find the value in year 2000, use y1(2000).

- NewProb				ne
- $91(2000)$				
-1(2000)				
Miln	RABD AUTI	FUNC		$2 / 30$

3D Graphing

eye $\theta=20$.	
eyeq=70.	
eye $\psi=0$	
$\times \mathrm{min}=-10$	
$\times \mathrm{max}=10$.	
$\times \mathrm{gr}$ id $=1$	
ymin=-10	
$\underline{y m a x}=10$.	
ygrid-1	
M MIN	KAD Alto 30

By moving the arrow keys, the
graph will rotate. To stop the rotation, press ENTER.

OTHER GRAPHING TECHNIQUES

Piecewise Functions:

Graph: $f(x)=\frac{x>-1}{x-5} \quad \begin{array}{cc}x^{2} & x>+ \text { otherwise }\end{array}$

-FLDTS	
$\sim 11=\left\{1-x^{2}, x>-1\right.$	
$y 2=(x-5, e l s e$	
ㅂ3 $=$	
반	
H1 $(x)=$ when $\langle x\rangle-1,1-x^{\wedge} 2, x-5 \ldots$	
MAIN	FADD AUTD FUNC

Script Using the Text Editor

Save your example as a script.

If you are starting on the script page: Press the APPS key and choose 9:Text Editor, then 3:New.
Use F2 to generate a command line and Enter to generate a comment line. Press F3 to view the Script. Press F4 to execute each line in the script one a time.
Use F3 to clear the split screen.

Animation

Animate a small circle moving along the inside of a larger circle.

How Big is an Acre?

Note: 1 acre $=43560$ sq. ft.
Is an Intercollegiate football field larger or smaller than an acre?

Random House Dictionary $2^{\text {nd }}$ Edition, 1987

Transformations on the TI-89

This is a lab to be completed using your TI-89. On a separate paper, answer the questions in complete sentences and draw the graphs neatly. Be sure to number your answers.
Part A: On the same axis, graph the following functions on your TI-89:
$f(x)=x^{2}$
$g(x)=x^{2}+2$
$h(x)=x^{2}-2$

1. Describe what happens to a graph when a basic function, $f(x)$ has a positive constant added to it, i.e., $f(x)+c$.
2. Describe what happens to a graph when a basic function, $f(x)$ has a positive constant subtracted from it, i.e., $f(x)$ - c.
3. Without using your calculator, predict what your sketch of the graph $y=x^{2}+4$ would look like. Draw the graph using a pencil and paper.
4. Without using your calculator, predict what your sketch of the graph $y=x^{2}-4$ would look like. Draw the graph using a pencil and paper.

Part B: On the same axis, graph the following functions on the $\mathrm{TI}-89$:
$f(x)=x^{2}$
$g(x)=(x-3)^{2}$
$h(x)=(x+3)^{2}$

5. Describe what happens to a graph when the argument of a basic function, the x of the $f(x)$ has a positive constant added to it, i.e., $f(x+b)$.
6. Describe what happens to a graph when the argument of a basic function, the x of the $f(x)$ has a positive constant subtracted from it, i.e., $f(x-b)$.
7. Without using your calculator, predict what your sketch of the graph $y=(x+4)^{2}$ would look like. Draw the graph using a pencil and paper.
8. Without using your calculator, predict what your sketch of the graph $y=(x-4)^{2}$ would look like. Draw the graph using a pencil and paper.

Part C: On the same axis, graph the following functions on the TI-89:
$f(x)=.5 x^{2}$
$g(x)=x^{2}$
$h(x)=2 x^{2}$

9. Describe what happens to the graph of a function when the function is multiplied by a positive constant greater than 1, i.e., $a^{*} f(x)$.
10. Describe what happens to the graph of a function when the function is multiplied by a positive constant less than 1, i.e., $\mathrm{a}^{\star} \mathrm{f}(\mathrm{x})$.
11. Without using your calculator, predict what your sketch of the graph $y=4 x^{2}$ would look like. Draw the graph using a pencil and paper.
12. Without using your calculator, predict what your sketch of the graph $y=.25 x^{2}$ would look like. Draw the graph using a pencil and paper.

Part D: On the same axis, graph the following functions on the TI-89:
$f(x)=-.5 x^{2}$
$g(x)=x^{2}$

13. Describe what happens to the graph of a function when the function is multiplied by a negative constant, i.e., $a^{*} f(x)$.
14. Without using your calculator, predict what your sketch of the graph $y=-4 x^{2}$ would look like. Draw the graph using a pencil and paper.

Part D: Use the general form of a function $a^{*} f(x+b)+c$, and let $a=-2, b=3$ and $c=1$. Notice how each parameter affects the graph.

15. Now go back and make the original $f(x)=$ abs (x). Display the graphs of
a) $f(x+2)$
b) $f(x)+3$
c) $4{ }^{*} f(x)$
d) $.25 * f(x)$
e) $-f(x)$
16. Now go back and make the original $f(x)=x^{3}$. Display the graphs of
a) $f(x+2)$
b) $f(x)+3$
c) $4{ }^{*} f(x)$
d) $.25{ }^{*} f(x)$
e) $-f(x)$

Script Using the Text Editor

Save your example as a script．

－NewProbe Lorne	－ロロトリ
－ 2 ¢ ${ }^{\text {a }}$	2HEWE LDEN HE．
－ 3 ¢	－r．
－Enlus $\left.E \cdot x^{2}+b \cdot x+c=0, x\right]$	8：Cilete Home \div ， x
$\overline{\mathrm{FLT}} \mathrm{TSTs}$	
	1：Home
T	4
Folder：mbin	$5 \cdot 9$
Wariabic： Euld	G：D．gt almatrix Editor
	Fiproaram Editor
S Enter＝Sive	1：Currort Eeftorr
	2HDPER！
F1T FET FRT FL	
C：VEwFrob	
atis is a soript．	E：$-4 \rightarrow$
$0: \operatorname{solve}\left(3 * x^{*} 2+b * x+0=0, x\right)$	$x=\frac{-(\sqrt{41}+3)}{4}$ ors $x=\frac{\sqrt{41}-1}{4}$

If you are starting on the script page：Press the APPS key and choose 9：Text Editor，then 3：New．
Use F2 to generate a command line and Enter to generate a comment line．
Press F3 to view the Script．Press F4 to execute each line in the script one a time．
Use F3 to clear the split screen．

Inverse Functions

Define $f(x)$. Solve $y=f(x)$ for x. Define $g(y)$. Interchange x and y by writing $\mathrm{g}(\mathrm{x})$.
Check using composition of functions.
Discuss the appearance of $|x|$ in the $f(g(x))$

ZoomSqr. Zoom square to note symmetry about the line $y=x$.

Try a second function. $\quad f(x)=\frac{1}{2 x+1} \quad f(x)=x^{2}$

