Proof by Mathematical Induction

Name : ______

7 8 9 10 11 12

TI-Nspire™

Assessment

Student

30 min

Question: 1.

i) Determine the sum of the first 10 cubic numbers: $1^3 + 2^3 + 3^3 + ... + 10^3$.

1 mark

ii) Square the sum of the first 10 whole numbers and comment on the result: $(1+2+3+...10)^2$

2 marks

iii) Explain how the diagram shown here relates to part (i) and (ii) above.

3 marks

Question: 2.

i) Express $\sum_{x=3}^{7} x^3$ in expanded form and hence evaluate the result.

2 marks

ii) Express: $\left(4+5+6+...20\right)^2$ using sigma \sum notation and hence evaluate the result.

2 marks

Question: 3.

i) Complete the following table of values:

2 marks

n	1	2	3	4	5	6	7	8	9	10
$\sum_{x=1}^{n} x^3$	1	9	36							
$\sum_{x=1}^{n} x$										
$\left(\sum_{x=1}^{n} x\right)^{2}$	1	9								

ii) Determine a rule for $\sum_{x=1}^{n} x^3$, express your answer in factorised form.

2 marks

iii) Determine a rule for $\sum_{x=1}^{n} x$, expressing the rule in factorised form.

2 marks

iv) Use your results from part (ii) and (iii) to show that $\left(\sum_{x=1}^{n} x\right)^2 = \sum_{x=1}^{n} n^3$

2 marks

Question: 4.

Use mathematical induction to prove the formula for the sum of the first n^3 whole numbers.

6 marks

