Proof by Mathematical Induction

Name : \qquad 11

TI-Nspire ${ }^{\text {TM }}$

Assessment

Student

30 min

Question: 1.
i) Determine the sum of the first 10 cubic numbers: $1^{3}+2^{3}+3^{3}+\ldots+10^{3}$.
\qquad
\qquad
ii) Square the sum of the first 10 whole numbers and comment on the result: $(1+2+3+\ldots 10)^{2}$
\qquad
\qquad
\qquad
iii) Explain how the diagram shown here relates to part (i) and (ii) above.
\qquad
\qquad
\qquad
\qquad
\qquad

Question: 2.

i) Express $\sum_{x=3}^{7} x^{3}$ in expanded form and hence evaluate the result.
\qquad
\longrightarrow
ii) Express: $(4+5+6+\ldots 20)^{2}$ using sigma \sum notation and hence evaluate the result.
\qquad
\qquad
(C) Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes

Question: 3.

i) Complete the following table of values:

\boldsymbol{n}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\sum_{x=1}^{n} x^{3}$	1	9	36							
$\sum_{x=1}^{n} x$										
$\left(\sum_{x=1}^{n} x\right)^{2}$	1	9								

ii) Determine a rule for $\sum_{x=1}^{n} x^{3}$, express your answer in factorised form.
\qquad
iii) Determine a rule for $\sum_{x=1}^{n} x$, expressing the rule in factorised form.
iv) Use your results from part (ii) and (iii) to show that $\left(\sum_{x=1}^{n} x\right)^{2}=\sum_{x=1}^{n} n^{3}$

Question: 4.

Use mathematical induction to prove the formula for the sum of the first n^{3} whole numbers.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]
[^0]: (C) Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes

