Area of a Triangle Between Parallel Lines

by - Chris Czapleski

Activity overview

This is an investigation of what happens to the area of a triangle when one vertex moves along a line parallel to the side opposite the vertex.

Concepts

Area of a triangle
Area of trapezoid
The distance between parallel lines is measured along the perpendicular between them

Teacher preparation

Students should know that the area of a triangle depends upon the length of a side and the altitude to that side.

Classroom management tips

Students should work in pairs or groups in order to observe the share their conjectures.

TI-Nspire Applications

Dynamic Geometry
Data Collection
Use of notes

Step-by-step directions

Insert a NOTES page to introduce the investigation.

Given $\triangle A B C$ with line $C P / /$ segment $A B$.
R and S are midpoints of segments $A C$ and $B C$ respectively.

Pull C along the parallel line and observe the figure.

Insert a GRAPHS AND GEOMETRY page.

Choose MENU; 2:VIEW; 1: HIDE AXES. You can use ctrl g to hide the entry line.

Choose MENU;6: POINTS AND LINES;5:SEGMENT to draw the bottom of the triangle. To quit a tool press esc.

Choose MENU;9:CONSTRUCTION; 2:PARALLEL, move the cursor close to the segment and press enter. Move the curser toward the top of the page and a parallel line will appear, press enter when it is where you want it.

Choose MENU;6: POINTS AND LINES;2:POINT ON; and place a point on the parallel line.

Choose MENU;6: POINTS AND LINES;5:SEGMENT to draw the other sides of the triangle.

Choose MENU;9: CONSTRUCTION; 5: MIDPOINT and place a midpoint on each of the non-parallel sides.

Choose MENU;6: POINTS AND
LINES;5:SEGMENT to connect the midpoints

Choose MENU: 1:TOOLS; 5: TEXT to label the points A, B, C, R, S and P. You can also enter Drag me at the top of the page while the tool is open.

Choose MENU;6: POINTS AND LINES;8:VECTOR to connect Drag me to point C.

Add another NOTES page with further instructions.

To draw the altitudes choose MENU;9:CONSTRUCT;1:PERPENDICULAR move the cursor to C and press enter, then move it to $A B$ and press enter. A perpendicular line appears.

Choose MENU; 1:TOOLS; 3: ATTRIBUTES and move the cursor to the perpendicular and press enter. Change the line style to dotted.

Choose MENU; 6:POINTS \& LINES;3:
INTERSECTION POINTS and place points at the intersection of RS and $A B$.

Choose MENU: 1:TOOLS; 5: TEXT to label the points Q and T . You can also enter the additional text while the tool is open.

As C moves along the parallel line, which of the following is changed?
a) The area of $\triangle \mathrm{ABC}$
b) The area of $\triangle \mathrm{RSC}$
c) The area of ABSR
d) None of the above

Observe the measurements on the next page to verify your conclusions.

Now measure the length of $\mathrm{RS}, \mathrm{AB}, \mathrm{CQ}$, and CT .
Choose MENU;7:MEASUREMENT;1:LENGTH, $A B$ and RS can be measured by moving the cursor near them and pressing enter. To measure CQ you must move the cursor to C press enter and then move to Q and press enter. This same procedure is used to measure CT.

To attach variables to the values move the cursor to the measurement, press ENTER and the number will turn gray, press ctrl var, label the value with the appropriate letters.

Now collect some data.
The data was entered manually by doing the following:

Place the cursor in the white box next to the A and enter the word base, next to B enter height, next to C area, next to $D b$, next to $E h$, and finally next to F area2.
In the gray box below A choose MENU;3:DATA; 2:DATA CAPTURE; 2:MANUAL DATA CAPTURE, enter AB for the variable.

Enter the variables into columns B, D, and E in the same manner.

In the gray box under C enter .5*base*height. In the gray box under F enter . $5 *$ b*h. When
 reference.

Add another NOTES page for the final question.

1.3	1.4	1.5	1.6	RAD AUTO REAL
In your own words explain your reasning for				
your conclusion.				

Activity extensions

- Dynamic Geometry can be used to investigate a large variety of geometric concepts.

Student TI-Nspire Document

Triangle.tns

