

Common Calculus Operations

Before you enter the following examples, you should reset your TI-89 to its default settings by pressing 2nd [MEM] F1 3:Default ENTER ENTER and then clear all one-letter variables by pressing 2nd [F6] 1:Clear a-z ENTER.

If you want to clear the Home screen and the entry line before beginning a new example, press HOME to move to the Home screen and then press F1 8:Clear Home CLEAR.

Graphing functions

Graph $y=x^{2}-2$ in a $[-5,5] \times[-5,10]$ window.

1. Enter the function in the $\mathrm{Y}=$ Editor.
$\rightarrow[\mathrm{Y}=]$ CLEAR X 囚 $2 \square 2$ [ENTER

2. Select the Window Editor by pressing \rightarrow [WINDOW].
3. Enter the x-window values:
(-)) 5 ENTER 5 ENTER 1 ENTER
4. Enter the y-window values:
(-)) 5 ENTER 10 ENTER 1 ENTER

5. Graph the function by pressing \square [GRAPH].

Limits

Find $\lim _{x \rightarrow \infty}\left(e^{-x}\right)$.
From the Home screen, press:

The first derivative of a function

Take the first derivative of $y=\frac{1}{x}$ with respect to x.
From the Home screen, press:
HOME [2nd [d] $\mathbf{1} \ddagger \mathbf{X} \square \mathbf{X} \square$ ENTER

The second derivative of a function

Take the second derivative of $y=\frac{1}{x}$ with respect to x.

From the Home screen, press:
HOME 2nd [$[d] \mathbf{1} \mathbf{~ X} \square \mathbf{X} \square \mathbf{2} \square$ ENTER

The roots of an equation

Find the real roots of $y=x^{2}+3 x-5$.
From the Home screen, press:

Indefinite integrals

Evaluate $\int \tan (x) d x$.
From the Home screen, press:
2nd [5] 2nd [TAN] $\mathbf{x} \square \square \mathbf{x} \square$ ENTER

Definite integrals

Evaluate $\int_{0}^{\pi} \sin x d x$.
From the Home screen, press:
2nd [5$]$ 2nd [sin] $\mathbf{x} \square \mathbf{x} \square \mathbf{0}$ [2nd [$\pi] \square$ ENTER

Series

Evaluate $\sum_{k=1}^{10} 2^{k}$.
From the Home screen, press:
CATALOG $\Sigma(2$ (alpha $\mathbf{K} \square$ alpha $\mathbf{K} \square \mathbf{1} \square 10 \square$ ENTER

Taylor series

Find the third degree Taylor polynomial for $y=\ln x$ expanded about $x=1$.

From the Home screen, press:
CATALOG taylor (2nd [LN] x $\square \square \mathbf{x} \square \mathbf{3} \square 1 \square$ ENTER

