Chapter 5

Riemann Sums and the
 Fundamental Theorem of Calculus

In calculus you study two types of integrals: indefinite integrals and definite integrals. Indefinite integrals are used to find the antiderivative of a function. Definite integrals can be used to find the area bounded by a function and the x-axis. In the following examples, you will discover a remarkable connection between these two types of integrals called the Fundamental Theorem of Integral Calculus.

Example 1: The area under a parabola

Example 1 begins with a numerical method to approximate the area bounded by a curve and then uses an analytic method that gives the exact area. The numerical method includes detailed graphs and rather lengthy calculations, which are performed with a calculator program. This program is listed at the end of this chapter. To duplicate the graphs and calculations, you will need to enter this program using the Program Editor in the APPS menu before beginning Example 1. If you don't want to enter the program, you can still study the numerical method and then use your TI-89 when you get to the analytic method.

Find the area bounded by

$$
f(x)=x^{2}, x=0, x=1 \text { and } y=0 .
$$

Solution

Before finding the area using either the numerical or analytic method, graph the function. Enter the function as $y 1$ in the Y= Editor. Enter the Window variable values shown here. Then graph the function.

4. The sum of the areas of these left-hand rectangles approximates the area under the curve. This is called a left-hand rectangular approximation method, Iram. Press ENTER to see the sum.
5. Next the program estimates the area with a righthand rectangular approximation method, rram. The upper-right-hand corners of these rectangles lie on the curve. Press ENTER to see these rectangles, and then press ENTER again to see the sum of the areas of these rectangles.
6. The program now uses rectangles with midpoints on the curve, called mram. Press ENTER to see these rectangles, and then press ENTER again to see the sum of their areas.

The sums of the left, right, and midpoint rectangles are called Riemann Sums. Which of the three Riemann Sums do you think best approximates the area bounded by

$$
f(x)=x^{2}, x=0, \text { and } y=0 ?
$$

What do you think will happen if you increase the number of rectangles to 25 ?
Press HOME to return to the Home screen and run the area() program again with 25 subintervals.

It appears that as the number of rectangles increases, they form a better fit to the area being estimated. Notice that the left, right, and midpoint estimates seem to be converging. From this, we estimate that the area is about . 33 .

Analytic method

You can find the exact value to which the left, right, and midpoint Riemann Sums converge with an analytic approach. First, define TI-89 functions for each of the rectangle methods Iram, rram, and mram. Then take their limit as the number of rectangles approaches infinity in order to find the value to which they converge.

Let's reexamine a picture of the right-hand rectangles in order to see how to define rram symbolically.
The area of each rectangle is given by the product of its height and width. If n is the number of rectangles and a and b are the left and right boundaries of the area, then the width of each rectangle is

$a x_{1} x_{2} x_{3} x_{4} \ldots \quad x_{n}=b$

$$
a x_{1} x_{2} x_{3} x_{4} \ldots \quad x_{n}=b
$$

$$
h=\frac{b-a}{n}
$$

The height of each rectangle is given by

$$
f\left(x_{1}\right), \quad f\left(x_{2}\right), \quad f\left(x_{3}\right), \quad \ldots \quad f\left(x_{n}\right)
$$

where

$$
x_{1}=a+h, \quad x_{2}=a+2 h, \quad x_{3}=a+3 h, \quad \ldots \quad x_{k}=a+k \cdot h
$$

This leads to the following definition for rram:

$$
\operatorname{rram}=h \sum_{k=1}^{n} f(a+k \cdot h)
$$

The definitions for Iram and mram are similar in nature to rram. Study the TI-89 function definitions below, and try to understand how they work.

```
\(f(x)=x^{2}\)
\(\operatorname{Iram}(a, b, n)=h^{*} \Sigma\left(f\left(a+h^{*} k\right), k, 0, n-1\right) \mid h=(b-a) / n\)
\(\operatorname{rram}(a, b, n)=h^{*} \Sigma\left(f\left(a+h^{*} k\right), k, 1, n\right) \mid h=(b-a) / n\)
\(\operatorname{mram}(a, b, n)=h^{*} \Sigma\left(f\left(a+h^{*}(.5+k)\right), k, 0, n-1\right) \mid h=(b-a) / n\)
```

Define these functions on your TI-89 and find the limit to which they converge.

1. Press 2nd [F6] Clean Up and select 2:NewProb to clear variables and set other defaults.
2. Use the Define command to define the functions shown above. After you define Iram, you can edit the entry line to change Iram slightly to produce rram and mram so that you don't have to type their entire definitions.

© 1999 TEXAS InsTRUMENTS Incorporated

CATALOG Define LRAM $\square \mathbf{A} \square \mathbf{B} \square \mathbf{N} \boldsymbol{\mathrm { H }} \mathbf{\mathrm { H }}$ CATALOG
 $\mathbf{B} \square \mathbf{A} \square \mathbf{N}$ ENTER
3. Set the Exact/Approx mode setting on Page 2 of the MODE dialog box to APPROXIMATE.
4. Check these functions by evaluating each one for $a=0, b=1$, and $n=10$.
5. Set Exact/Approx= EXACT.
6. Take the limit of each summation function as the number of rectangles approaches infinity. The exact area is $1 / 3$.

CATALOG
ENTER

7. The definite integral $\int_{0}^{1} f(x) d x$ also should equal the limit of the Riemann Sums.

$$
\text { 2nd [f] } \square \mathbf{x} \square \square x \square 0 \square 1 \square \text { ENTER }
$$

8. Find the area for other values of $b(b=2$ and $b=3)$. See if the definite integral gives the same result as the limits of the Riemann Sums.

9. Predict the result for $a=0$ and $b=x$. Verify your prediction on the TI-89.

How is the area from $a=0$ to $b=x$ related to $f(x)$? If you noticed the area function is the antiderivative of $f(x)$, you are on your way to discovering a relationship called the Fundamental Theorem of Calculus.
10. Use Iram to find the area from a to b.
11. This answer is not in an easily recognizable form, so use the expand(command to expand the result. The result from step 10 is pasted from the history area to the entry line to save typing.

CATALOG expand Θ ENTER \square ENTER
12. Predict $\int_{a}^{b} f(x) d x$.

Verify your prediction on the TI-89.
How is this answer related to $f(x)$?
Did you notice there is an antiderivative of $f(x)$ involved?

© 1999 TEXAS InsTRUMENTS Incorporated

Example 2: The area under other curves

Redefine $f(x)$ and see if the relationship you observed in Example 1 works for other functions.

Solution

1. Press 2nd [F6] Clean Up and select 2:NewProb to clear variables and set other defaults.
2. Use the Define command and define

$$
f(x)=x^{3}
$$

3. Find the limit of the right-hand Riemann Sum for the area from a to b, and compare the result with the corresponding definite integral.
4. Define $f(x)=\cos (x)$.
5. Find the limit of the right-hand Riemann Sum and compare the result with the corresponding definite integral.

The TI-89 was not able to evaluate the limit of the Riemann Sums for $f(x)=\cos x$ since there is not a simple closed form expression for this sum; however, it was able to evaluate the definite integral. Even though the calculator could not evaluate the limit of the Riemann Sum for this function, the pattern from previous examples still holds. That is, the limit of the Riemann Sum is related to antiderivatives of $f(x)$.

Conclusion

In general, the limit of the Riemann Sums for the area bounded by a positive function $f(x)$, the vertical lines $x=a$ and $x=b$, and the x-axis is equal to $f(b)-f(a)$ where $f(x)$ is an antiderivative of $f(x)$. This result is called the Fundamental Theorem of Calculus.
Since this area is given by the definite integral

$$
\int_{a}^{b} f(x) d x
$$

the Fundamental Theorem also tells us that

$$
\int_{a}^{b} f(x) d x=f(b)-f(a)
$$

where $f(x)$ is an antiderivative of $f(x)$. This is a powerful shortcut.

Rectangular Area Approximation Program

Here is the program used to draw and evaluate the rectangular methods in this chapter. You must enter the function that bounds the area as $y 1$ in the Y=Editor and enter the proper viewing Window variable values before running the program.

area()	$a+h \rightarrow x$
Prgm	While $\mathrm{j}<\mathrm{n}$
Prompt a	$y 1(x)+r \rightarrow r$
Prompt b	Line $x-h, 0, x-h, y 1(x)$
Input "no. of subint=", n	Line $x-h, y 1(x), x, y 1(x)$
(b-a)/n $n \rightarrow$	Line $\mathrm{x}, 0, \mathrm{x}, \mathrm{y} 1(\mathrm{x})$
$\mathrm{h} / 2 \rightarrow \mathrm{~d}$	$x+h \rightarrow x$
$0 \rightarrow 1$	j+1 \rightarrow j
$\emptyset \rightarrow m$	EndWhile
$\emptyset \rightarrow r$	Pause
ClrDraw	Disp "right=", h*r*1.0
DispG	Pause
$\emptyset \rightarrow$ j	ClrDraw
$a \rightarrow x$	DispG
While $\mathrm{j}<\mathrm{n}$	$0 \rightarrow j$
$y 1(x)+1 \rightarrow 1$	$a+d \rightarrow x$
Line $\mathrm{x}, 0, \mathrm{x}, \mathrm{y} 1(\mathrm{x})$	While $\mathrm{j}<\mathrm{n}$
Line $x, y 1(x), x+h, y 1(x)$	$\mathrm{y} 1(\mathrm{x})+\mathrm{m} \rightarrow \mathrm{m}$
Line $x+h, 0, x+h, y 1(x)$	Line $x-d, 0, x-d, y 1(x)$
$x+h \rightarrow x$	Line $x-d, y 1(x), x+d, y 1(x)$
j+1 \rightarrow j	Line $x+d, y 1(x), x+d, 0$
EndWhile	$x+h \rightarrow x$
Pause	j+1 \rightarrow j
Disp "left=",h*l*1.0	EndWhile
Pause	Pause
Clidraw	$\mathrm{h} * \mathrm{~m} \rightarrow \mathrm{~m}$
DispG	Disp "midpoint=",m*1.ø
${ }_{0 \rightarrow j}$	EndPrgm

Exercises

1. Evaluate Iram, rram, and mram by hand for

$$
f(x)=2 x^{2}+1, a=1, b=2, \text { and } n=4 .
$$

2. Use the TI-89 to evaluate the rectangular approximations in Exercise 1.
3. Use the TI-89 to take the limits of the rectangular methods from Exercise 1 as $n \rightarrow \infty$.
4. Use a definite integral to evaluate the limits of the rectangular methods from Exercise 1 as $n \rightarrow \infty$. Compute by hand and then confirm with the TI-89.
5. Evaluate Iram, rram, and mram by hand for

$$
f(x)=\cos (x), a=0, b=\pi, \text { and } n=4
$$

6. Use the TI-89 to evaluate the rectangular approximations in Exercise 5.
7. Use the TI-89 to take the limits of the rectangular methods from Exercise 5 as $n \rightarrow \infty$.

Use a definite integral to evaluate the limits of the rectangular methods from Exercise 5 as $n \rightarrow \infty$. Compute by hand and then confirm with the TI-89.
© 1999 TEXAS Instruments Incorporated

