Math Nspired
Student Notes

Using the Document: EulersMethod.tns
On page 1.2, the derivative $y^{\prime}=g(x, y)$ is defined in a Math Box. The default definition for y^{\prime} is $g(x, y)=\frac{x y}{4 \sqrt{1+x^{2}}}$. This expression can be changed by the user to allow for more in-depth and conceptual questions concerning Euler's Method. The initial condition, the endpoint x-value, and the number of Euler steps are also defined on page 1.2.

Page 1.3 is a Lists and Spreadsheet page that displays x_{i}, y_{i}, and $\Delta x \cdot g\left(x_{i}, y_{i}\right)$. Page 1.4 shows a graph of the points obtained using Euler's Method. The slider for n is used to change the number of steps and the slider for k is used to step through each Euler approximation

Suggested Applications and Extensions

Use the default initial value problem, $y^{\prime}=\frac{x y}{4 \sqrt{1+x^{2}}}, y(0)=1$, to answer questions 1-3. The values for x_{0}, y_{0}, b, and n can be set either in a Math Box or by using a slider. The default values are $x_{0}=0, y_{0}=1$, $b=6$, and $n=6$. The numerical approximations are given on page 1.3, a Lists and Spreadsheet page, and a visualization of the approximation is given on page 1.4.

1. Use Euler's Method to approximate y (6) for each of the following values for n : (i) $n=6$, (ii) $n=12$, (iii) $n=24$. Which value of n do you think produces the best estimate for $y(6)$? Why?
2. Use Euler's Method to approximate $y(-3)$ for each of the following values for n : (i) $n=6$, (ii) $n=12$, (iii) $n=24$. Which value of n do you think produces the best estimate for $y(-3)$? Why?
3. Use Euler's Method to approximate $y(6)$ for $n=6$. Use separation of variables to find an expression for y in terms of x. Add the graph of $y=f(x)$ on page 1.4 and compare it to approximation produced by Euler's Method. Use the graph of $y=f(x)$ to explain why the Euler approximation for $y(6)$ is an underestimate of the true value for $y(6)$.

Additional Problems

1. Use Euler's Method with $n=4$ to estimate $y(2)$ where $y(x)$ is the solution to the initial-value problem $y^{\prime}=3 y-x, y(1)=0$.
2. Use Euler's Method with $n=8$ to estimate $y(2)$ where $y(x)$ is the solution to the initial-value problem $y^{\prime}=x y^{2}-\frac{1}{4} x^{2}, y(0)=1$. Consider each step in this Euler approximation. Explain why the estimate for $y(2)$ is so much larger than the estimate for $y(1.75)$.
3. Use Euler's Method with $n=8$ to estimate $y(4)$ where $y(x)$ is the solution to the initial-value problem $y^{\prime}=x+y, y(0)=1$. Find $y^{\prime \prime}$ in terms of x and y, and use this expression to explain why this approximation is an underestimate or an overestimate for the true value of $y(4)$.
4. Use Euler's Method with $n=8$ to estimate $y(2)$ where $y(x)$ is the solution to the initial-value problem $y^{\prime}=\frac{y}{1+x^{2}}, y(0)=-1$. Use separation of variables to find an expression for y in terms of x. Graph $y=f(x)$ and the Euler approximation on the same coordinate axes. Explain why the first

Math Nspired
few Euler approximations are below the graph of $y=f(x)$ and the remaining approximations are above the graph of $y=f(x)$.
5. Use Euler's Method with $n=8$ to estimate $y(\pi)$ where $y(x)$ is the solution to the initial-value problem $y^{\prime}=\sin (x+y), y(0)=0$. Use $n=16$ to estimate $y(\pi)$. Which estimate do you think is better? Why?
6. Use Euler's Method with $n=8$ to estimate $y(-2)$ where $y(x)$ is the solution to the initial-value problem $y^{\prime}=-x^{2} y, y(0)=1$. Use separation of variables to find an expression for y in terms of x. Graph $y=f(x)$ and the Euler approximation on the same coordinate axes. Find $y^{\prime \prime}$ and use this to explain why the Euler approximation for $y(-2)$ is an underestimate of the true value for $y(-2)$.
7. Let the function $y=f(x)$ be the solution to the differential equation $\frac{d y}{d x}=y-x^{2}$ such that $f(0)=1$.
(a) The function f has a critical point at $x=1.67835$. What is the y-coordinate of this critical point?
(b) Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y. Use $\frac{d^{2} y}{d x^{2}}$ to determine whether the critical point found in part (a) is a relative minimum, relative maximum, or neither. Justify your answer.
(c) The function f has an inflection point at $x=\ln 2$. Use Euler's Method with $n=10$ to estimate $y(1.67835)$ where $y(1)=5-e$. Is this approximation an overestimate or an underestimate. Justify your answer.

