Polar Necessities	Name
Polar.tns	Class

Part 1 – Plotting Coordinates & Exploring Polar Graphs

The coordinates of a polar curve are given as (θ, r) .

- 1. On page 1.3, grab and drag the head of the arrow r so that it is at (a) $(15^\circ, 4)$, (b) $(270^\circ, 5)$,
 - (c) $\left(\frac{\pi}{6}, 3\right)$ and (d) $\left(\frac{3\pi}{2}, 6\right)$. Plot and label these points on the graph below.

- **2.** If $r(\theta) = \cos(\theta)$, what is $r\left(\frac{\pi}{3}\right)$?
- **3.** Let $r(\theta) = 2 2\cos(\theta)$. Plot points of $r(\theta)$ by entering values of r into the spreadsheet on page 1.6. What is the shape of the graph?
- 4. Use page 2.2 to explore the graph of a polar function. Grab and drag the open point on the circle. Confirm your values for r on page 1.5. Double-click on $r1(\theta)$ to change the equation. Explore different equations. Which of the following did you make? Write the equation next to the graph shape.
 - circle
 - rose with even number of petals
 - rose with odd number of petals
 - limaçon with an inner loop

Part 2 – Slopes of Polar Graphs

- 5. How do you find the slope of a line tangent to a polar graph?
- 6. Recall the polar graph from page 1.3. When *r* and θ are known, how can you find the corresponding *x* and *y*-coordinates?
- **7. a.** What are the criteria that determine when a horizontal tangent will occur?
 - **b.** How many horizontal tangents occur on the polar rose to the right?
 - **c.** Find the angle θ of the point where the horizontal tangent is shown to the right?

- **d.** Consider how CAS was used on page 3.7 to solve for all θ between 0 and π for the horizontal tangent of **r1**(θ) = 4cos(3 θ). Use this *Calculator* application to similarly find the angle for the vertical tangents. Show the setup and answers.
- 8. Find $\frac{dy}{dx}$ when $\theta = \frac{2\pi}{3}$ for $r1(\theta) = 4\cos(3\theta)$. Show you work. Do not use a calculator to solve this problem. (Hint: Use your answer to Problem 6 to help you.)

Part 3 – Area of Polar Graphs

The equation for the area inside a polar curve is $\frac{1}{2}\int_{\theta_1}^{\theta_2} (r(\theta))^2 d\theta$ where θ_1 and θ_2 are the "first"

two times r = 0.

9. What are the limits of integration to find the area of one petal of $r1(\theta) = 4sin(3\theta)$?

10. Use CAS to find the area of the first petal of $r1(\theta) = 4sin(3\theta)$.