\qquad
\qquad

Part 1 - Plotting Coordinates \& Exploring Polar Graphs

The coordinates of a polar curve are given as (θ, r).

1. On page 1.3, grab and drag the head of the arrow r so that it is at $(a)\left(15^{\circ}, 4\right),(b)\left(270^{\circ}, 5\right)$,
(c) $\left(\frac{\pi}{6}, 3\right)$ and (d) $\left(\frac{3 \pi}{2}, 6\right)$. Plot and label these points on the graph below.

2. If $r(\theta)=\cos (\theta)$, what is $r\left(\frac{\pi}{3}\right)$?
3. Let $r(\theta)=2-2 \cos (\theta)$. Plot points of $r(\theta)$ by entering values of r into the spreadsheet on page 1.6. What is the shape of the graph?
4. Use page 2.2 to explore the graph of a polar function. Grab and drag the open point on the circle. Confirm your values for r on page 1.5. Double-click on $\mathbf{r 1}(\theta)$ to change the equation. Explore different equations. Which of the following did you make? Write the equation next to the graph shape.

- circle
- rose with even number of petals
- rose with odd number of petals
- limaçon with an inner loop

Polar Necessities

Part 2 - Slopes of Polar Graphs

5. How do you find the slope of a line tangent to a polar graph?
6. Recall the polar graph from page 1.3. When r and θ are known, how can you find the corresponding x - and y-coordinates?
7. a. What are the criteria that determine when a horizontal tangent will occur?
b. How many horizontal tangents occur on the polar rose to the right?
c. Find the angle θ of the point where the horizontal tangent is shown to the right?

d. Consider how CAS was used on page 3.7 to solve for all θ between 0 and π for the horizontal tangent of $\mathbf{r}(\theta)=4 \cos (3 \theta)$. Use this Calculator application to similarly find the angle for the vertical tangents. Show the setup and answers.
8. Find $\frac{d y}{d x}$ when $\theta=\frac{2 \pi}{3}$ for $\mathbf{r}(\theta)=4 \cos (3 \theta)$. Show you work. Do not use a calculator to solve this problem. (Hint: Use your answer to Problem 6 to help you.)

Part 3 - Area of Polar Graphs

The equation for the area inside a polar curve is $\frac{1}{2} \int_{\theta_{1}}^{\theta_{2}}(r(\theta))^{2} d \theta$ where θ_{1} and θ_{2} are the "first" two times $r=0$.
9. What are the limits of integration to find the area of one petal of $\mathbf{r}(\theta)=4 \sin (3 \theta)$?
10. Use CAS to find the area of the first petal of $\mathbf{r}(\theta)=4 \sin (3 \theta)$.

