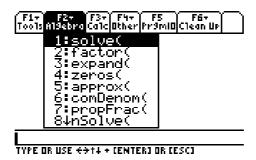
Getting Started with the TI-89

HOME

When you turn on your TI-89, the **HOME** screen should appear. If it does not, press the **HOME** button.

From the **HOME** screen, you can access the CAS menus by pressing the **F1** to **F6** buttons. The **F6** menu can be accessed by the arrow keys or by pressing 2nd **F1**

F1 Tools

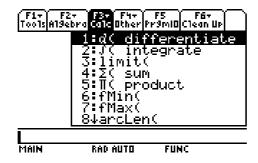

This is similar to a conventional File or Edit menu on a computer program.

Option **8 Clear Home** is useful to clear the HOME screen of previously used expressions.

F2 Algebra

This has many of the CAS commands.

An example of each Algebra command is listed in the table below:


Example	Solution
$solve(x^2-9=0,x)$	x = -3 or x = 3
$factor(x^2-16)$	(x-4)(x+4)
expand(x*(x-5))	$x^2 - 5 \cdot x$
$zeroes(x^2-5x+6,x)$	(2 3)
$approx(\pi)$	3.14159
comDenom(x^2/2+x/5)	$5 \cdot x^2 + 2 \cdot x$
	10

Getting Started with the TI-89

propFrac((5x^2+2x)/10)	$\frac{x^2}{2} + \frac{x}{5}$
nSolve(3x–5=0,x)	1.66667
Trig	
tExpand(sin(2x))	$2 \cdot \sin(x) \cdot \cos(x)$
$tCollect(2cos(x)^2-1)$	$\cos(2\cdot x)$
Complex	
$cSolve(x^2+9=0,x)$	$x = 3 \cdot i$ or $x = -3 \cdot i$
$cFactor(x^2+9,x)$	$(\mathbf{x} + -3 \cdot \mathbf{i}) \cdot (\mathbf{x} + 3 \cdot \mathbf{i})$
$cZeroes(x^2+9,x)$	$(3\cdot i -3\cdot i)$
Extract	
$getNum(x^2/2+x/5)$	$x \cdot (5 \cdot x + 2)$
$getDenom(x^2/2+x/5)$	10
$left(x^2-2x=8)$	$x^2 - 2 \cdot x$
$right(x^2-2x=8)$	8

F3 Calc

This has many of the calculus commands:

An example of each Calculus command is listed below:

Example	Solution
$d(x^3+4x^2,x)$	$3 \cdot x^2 + 8 \cdot x$
$\int (3x^2+8x,x)$	$x^3 + 4 \cdot x$
$\lim(x^2-4,x,1)$	-3
$\Sigma(x^2,x,1,5)$	55
$\Pi(x^2,x,1,5)$	14400
$fMin(x^2-2x,x)$	x = 1
$fMax(-x^2+4,x)$	x = 0
$arcLen(\sqrt{9-x^2}), x, -3, 3)$	9.42478
$taylor(e^{(x)},x,5)$	$\frac{x^5}{120} + \frac{x^4}{24} + \frac{x^3}{6} + \frac{x^2}{2} + x + 1$
$nDeriv(x^3,x,h)$	$3 \cdot x^2 + h^2$
$nInt(x^2,x,1,5)$	41.33333
$deSolve(y"+2y'+y=x^2,x,y)$	$y=(@1 \cdot x + @2) \cdot e^{-x} + x^2 - 4 \cdot x + 6$
	(this is a general solution)

F4 Other

This has miscellaneous commands.

A few examples of useful commands in this menu are listed below:

Example	Solution
Define $f(x)=x^4$	Done
f(-1)	-3
Define ab=5	Done
ab	5
DelVar ab	Done
ab	ab

Another useful feature from this menu is the ability to turn the graph plots on and off using the **FnOn** and **FnOff** selections.

F5 PrgmID

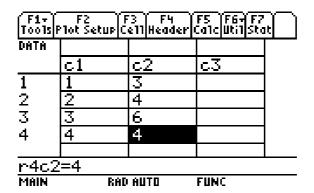
This menu accesses CAS programs. This screen will be blank until programs are written or imported.

F6 Clean Up

Selecting Option 1 Clear a–z is recommended to clear the variables before starting a new session.

2D Plotting

The 2D plotting features are similar to those of a TI-83 or TI-83+. The green options above the **F1** to **F5** buttons allow you to perform these operations. To access them, press the green **9** button first. You can also access the **Y=Editor**, **Graph** and **Table** applications by first pressing the **APPS** button.

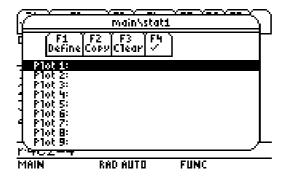

Statistics

To access the Data Editor:

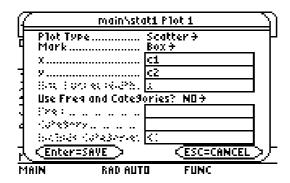
- press the **APPS** button
- select option 6: Data/Matrix Editor
- select 3: New

Enter the following numbers into lists **c1** and **c2**.

There are seven menus available for the Data Editor.


F1 Tools menu

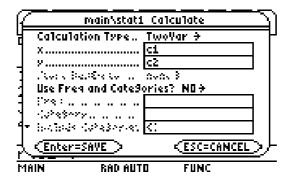
This is similar to a conventional File menu on a computer.


F2 Plots Setup

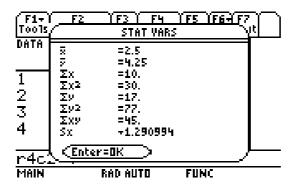
Select F2 to enter the Plots Setup screen

Once you are viewing this screen, select **F1 Define** to set up a statistical plot.

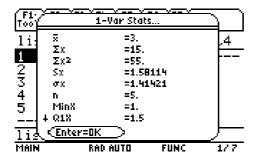
- Keep the **Plot Type** on **Scatter**
- Keep the Mark on Box
- In the x box, enter c1
- In the y box, enter c2


Press Enter twice to return to the Data Editor

F3 Cell takes you to a specific cell. Select ESC to return to the Data Editor

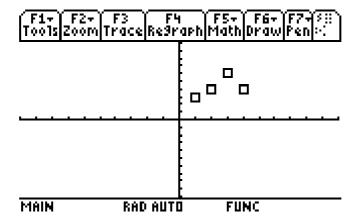

F4 Header allows you to change the header of each column. eg You could change the header **c1** to read **time.**

F5 Calc takes you to the calculate screen


- Set Calculation Type to TwoVar
- In the x box, enter c1
- In the y box, enter c2

Press **Enter** to get the Two Variable Statistics. Use the up and down arrow keys to scroll through the statistics.

Press **Enter** to return to the Data Editor.

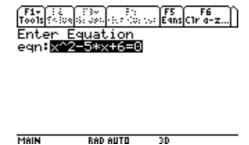

Scroll down with the arrow keys to view the rest of the **1–Var Stats** data. Press **F5** again to experiment with the other calculation types such as OneVar, CubicReg, ExpReg, etc.

F6 Util (or 2nd F1) accesses the utilities such as Delete, Sort and Clear.

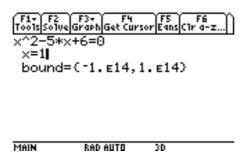
F7 Stat (or 2nd F2) displays the statistics that were set using the **F5 Calc** menu.

Statistical Plotting

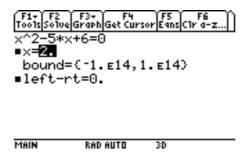
Select the Graph button (green ◆ F3) to plot the data.



If previous graphs appear on the screen, you can select **Y**= (green ◆ F1) button and clear the functions. Alternatively, you can turn off the functions by selecting HOME → F4 Other → 8 FnOff.


Numeric Solver

Return to the opening screen by selecting APPS


Select Numeric Solver Enter the equation x^2-5x+6=0

Select **Enter** and make an estimate of x=1

Select **F2 Solve** to get the solution x = 2.

Repeat with a guess of x = 4 to get the other solution of x = 3.

3D Plotting

Getting Started with the TI-89

Press the **MODE** button and use the arrow keys to change the **Graph** setting to **3D**. Use the same buttons that are used for 2D graphing to enter and graph the equations. Be aware that there can be a considerable time delay involved with each 3D plot.

Try
$$z1 = y^2 - x^2$$