Arcs and Central Angles of Circles

Student Activity

Name
Period
Date \qquad
> Open the TI-Nspire document arcs and central angles of circles.tns.
$>$ Press ctrl and move to page 1.2 to begin the lesson.

Page 1.2

Using the angle measurement tool, find the measure of the angle between each number on the face of a clock with the center of the circle as the vertex of the angle. (That is, how many degrees are there between the 12 and the 1 , between the 1 and the 2 , and so forth?)

How many degrees are there between each of the numbers on the face of a clock?
\qquad
\qquad between 8 and 9 \qquad
between 1 and 2
between 5 and 6
between 9 and 10 \qquad
between 2 and 3
between 6 and 7 \qquad between 10 and 11 \qquad
between 3 and $4 \quad$
between 7 and 8 \qquad between 11 and 12 \qquad

What is the total number of degrees? \qquad

Page 1.3

Using the angle measurement tool, move clockwise around the face of a clock.
How many degrees are between 12 o'clock and 3 o'clock? \qquad between 3 and 6 ? \qquad between 6 and $9 ?$ \qquad between 9 and 12? \qquad
What is the total number of degrees? \qquad

Page 1.4

Using the angle measurement tool, move clockwise around the face of a clock.
How many degrees are between 12 o'clock and 6 o'clock? \qquad
between 6 o'clock and 12 o'clock? \qquad
What is the total number of degrees? \qquad

Page 1.5

On pages 1.2-1.4, you have been finding central angles of the clock face. A central angle is an angle whose vertex is the center of the circle.

The arc between the numbers is a circle arc. Minor arcs are formed when the measure of the central angle is less than 180°. A major arc is that part of the circle that is not a minor arc.

Arcs and Central Angles of Circles

 Student Activity
Name

Period
Date \qquad

Page 1.6

Grab the open point and move it around the circle. Notice the major arcs and the minor arcs.

Pages 1.7-1.10

Identify the minor arc and major arc of the circles. Check your answers by choosing:
(ment) Check answers

Page 1.11

Measure the remaining angles to verify that they are the same measure as $\angle A O B$.
Arc AB is one-sixth ($60 / 360$) of the total circle.
To find the length of arc $A B$
find the circumference of the circle \qquad
multiply the circumference by $1 / 6$ \qquad
Find the length of arc AC
$\operatorname{arc} A C$ is what part of the total circle? \qquad
multiply by circumference \qquad
Find the length of arc AD
$\operatorname{arc} \mathrm{AD}$ is what part of the total circle? \qquad
multiply by circumference \qquad
How do you think you would find the measure of the major arcs?

