\qquad

Problem 1 - Converting Rectangular to Polar

How can a polar equation be converted to a rectangular equation?
In this activity, this type of conversion will be explored using some basic concepts.
In the lower left, observe a circle of radius 5 in polar coordinates. In the lower right, observe a circle of radius 5 in rectangular coordinates.

1. What do the polar and rectangular circle equations have in common?

It's helpful to remember that $x^{2}+y^{2}=r^{2}$. This is a link between the two equation forms. What other links exist? Look over the diagram to the right.
2. Using this diagram, identify three basic equations useful in converting rectangular equations to polar form.

3. Convert $x^{2}+\left(\begin{array}{ll}y & 4\end{array}\right)^{2}=16$ to polar form using the equations identified above. Show your work in the space provided.

Name

To set your calculator to Polar mode, press mode and select POLAR as shown to the right. At this time, also set your graphing calculator to Radian mode by selecting RADIAN on this screen as well.
To graph a polar equation on your graphing calculator, press y= and enter your equation.

```
NORMAL FLOAT GUTO REAL RADIAN MP
FUNCTION TYPES
FUNCTION TYPES
MATHPRINT CLASSIC
NORMAL SCI ENG
FLOAT 0123456789
RADIAN DEGREE
FUNCTION PARAMETRIC POLAR SEQ
THICK DOT-THICK THIN DOT-THIN
THICK DOT-THICK THIN
SEQUENTIAL SIMUL
REAL a+bi re^(0i)
FULL HORIZONTAL GRAPH-TABLE
FRACTIONTYPE:MRd Un/d
ANSWERS:GUTO DEC
STATDIAGNOSTICS: DFF ON
STATWIZARDS: DN DFF
SET CLOCK 01/07/15 07:53PM
LANGUAGE: ENGLISH
```

4. Test your results by graphing both the rectangular and polar forms. If the results are equivalent, as long as the graphing window is set at the same values, the graphs will appear the same. Make sketches of the initial rectangular equation and the polar equation obtained in the previous exercise on the pair of axes below.

Rectangular Graph

Polar Graph

Problem 2 - Converting Polar to Rectangular

Polar equations may also be converted to rectangular form using substitution. Trigonometric identities, such as the angle sum and difference formulas can be useful tools in this process.

Recall these formulas:

$$
\begin{aligned}
& \cos (A+B)=\cos A \cdot \cos B-\sin A \cdot \sin B \\
& \cos (A-B)=\cos A \cdot \cos B+\sin A \cdot \sin B \\
& \sin (A+B)=\sin A \cdot \cos B+\cos A \cdot \sin B \\
& \sin (A-B)=\sin A \cdot \cos B-\cos A \cdot \sin B
\end{aligned}
$$

Name
5. Convert the polar equation $2=r \cdot \cos (\theta+\pi)$ to rectangular form. Show your work in the space provided.
6. Make sketches of the initial rectangular equation and the polar equation obtained in the previous exercise on the pair of axes below.

Rectangular Graph

\qquad

Additional Practice

7. Write the polar form of each of the following equations:
a. $x^{2}+y^{2}=64$
b. $(x-2)^{2}+y^{2}=4$
c. $x=-5$
d. $x^{2}-y^{2}=1$
8. Write the rectangular form of each of the following polar equations:
a. $r=3$
c. $6=r \cdot \cos \left(\theta-\frac{\pi}{4}\right)$
d. $r=3 \sec \left(\theta+60^{\circ}\right)$
b. $r=3 \sin \theta$ (Hint: Multiply each side by r first.)
