Circumcentre

Guided Investigation

Student Investigation

1011

Introduction

A circumcircle passes through each vertex of a polygon. This investigation focuses on the specific case of the circumcircle as it applies to a triangle. The concept of a circumcircle and other similar geometric problems underpin concepts associated with electronic navigation. The circumcentre is the centre of the circumcircle and therefore, a point that is equidistant from each of the vertices.

https://bit.ly/Circumcentre

Geometry

Open a New TI-Nspire Document and insert a Graphs Application.
Draw a triangle with vertices:

$$
A:(0,0) \quad B:(14,4) \quad C:(2,10)
$$

Construct perpendicular bisectors to sides: AB, BC and AC .
The aim is to determine the point where all three perpendicular bisectors intersect, the circumcentre of the triangle.
Note: Points P, Q \& R have been labelled for reference only.

Question: 1.
Determine the gradient of side $A B$ and hence the gradient of the perpendicular bisector (PD)

Question: 2.

Determine the coordinates of the midpoint on side AB. (Point P)

Question: 3.

Determine the equation of the perpendicular bisector to side AB. (Line PD)

The translational form of a straight line is useful when the gradient and a point are known:
$y=m(x-h)+k$ is a straight line with gradient m passing through the point (h, k).
Remember to use your calculator to check your answers.

Question: 4.

Determine the gradient of side $A C$ and hence the gradient of the perpendicular bisector (RD)

Question: 5.

Determine the coordinates of the midpoint on side AC. (Point R)

Question: 6.

Determine the equation of the perpendicular bisector to side AC. (Line RD)

Question: 7.

Determine the gradient of side BC and hence the gradient of the perpendicular bisector (QD)
Question: 8.
Determine the coordinates of the midpoint on side BC. (Point R)
Question: 9.
Determine the equation of the perpendicular bisector to side BC. (Line QD)
Question: 10.
Use simultaneous equations to determine the point of intersection for the perpendicular bisectors: QD and RD.

Question: 11.

Verify the point of intersection (circumcentre) using the perpendicular bisectors QD and PD.
Question: 12.
Verify that distances AD, BD and CD are equal.
Question: 13.
Determine the equation to the circle that passes through the three vertices.

