Teacher Notes

Activity 3

Objective

 Students will develop an understanding of solving a system of equation using the elimination method.

Applicable TI InterActive! Functions

- Solve solve (*equation*, *variable*)
 - Expand expand (*equation*)
- Define function_name := function

Solving Systems of Equations: The Method of Elimination

Problem

There are several methods that can be used to solve a system of equations. Students will employ the elimination method to solve systems of equations.

Pre-Activity

Solve the system $\frac{3x+4y=-1}{4x-3y=7}$ using the elimination method and verify graphically.

- 1. Let eq1 be 3x + 4y = -1 and eq2 be 4x 3y = 7.
- 2. Using paper and pencil, have the students multiply eq1 by 3 and eq2 by 4. Next, have students add the new eq1 and the new eq2. Then have the students solve for *x* and *y*.
- 3. Students should open a new TI InterActive! document. Select Math box and define eq1: = 3x + 4y = -1. In the next math box, define eq2: = 4x 3y = 7.
- 4. In a math box, multiply eq1 by 3. In the next math box, expand the result by typing **expand (3*eq1)**. (Select **Math**►**Algebra**►**Expand**.) Expand will distribute the 3 over 3x + 4y.
- 5. In a math box, multiply eq2 by 4 and then expand the result. Expand will distribute the 4 over 4x 3y.
- 6. In a math box, define eq3: = 3 * eq1 + 4 * eq2.
- 7. In a math box, solve eq3 for *x* by typing **solve (eq3,x)**.

- 8. In the next math box, define *x* as this answer.
- 9. In the next math box, solve eq1 for *y* by typing **solve (eq1,y)**.

This activity has students solve systems of equations that can't be verified graphically in the *xy* plane. Solutions to the systems of equations in the student activity can be verified using matrices. To solve the system in the pre-activity using matrices :

- 1. On the Math Palette, select Matrix
- 2. On the Math Palette, choose a 2x2 matrix.
- 3. Enter the coefficients as shown.
- 4. Select inverse x^{-1} and multiply the inverse of the coefficient matrix by a 2x1 matrix of the constants.
 - $\begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}^{-1} * \begin{bmatrix} -1 \\ 7 \end{bmatrix}$

Explorations

- 3. eq4: = eq1 + eq2; 8x + 2y = 26
- 4. eq5: = eq1 + 2 * eq3; y 9x = -13
- 5. eq6: = eq4 2 * eq5; 26x = 52 or eq6: = -0.5 * eq4 + eq5; -13x = -26
- 6. x: = 2
- 7. y := 5
- 8. z: = 6
- 9. 19
- $10. \ 7$
- 11. -16
- 12. The solution to this system is $\{2, 5, 6\}$. The answers to questions 9 through 11 verify the solution to this system since the left side of each equation has the same value as the corresponding right sides when x = 2, y = 5, and z = 6.

- -

.

29

Additional Exercises

1. The process may vary with each student. One process could be:

Process	Solution
eq4: = 2 * eq1 - 3 * eq2; 13y - 4z = -38	x: = 7
eq5: = 4 * eq1 - 3 * eq3; -10y - 11z = -13	y : = -2
eq6: = 11 * eq4 - 4 * eq5; 183y = -366	z: = 3

2. The process may vary with each student. One process could be:

Process	Solution
eq4: = -5 * eq1 + eq2; 33z - 16y = 14	x: = -4
eq5: = $3 * eq1 + eq3$; $8y - 6z = 0$	$\mathbf{y} \colon = \frac{1}{2}$
eq6: = eq4 + 2 * eq5; 21z = 14	$z := \frac{2}{3}$

3. The process may vary with each student. One process could be:

Process	Solution	
eq4: = 4 * eq1 - eq2; 17x + 5y = 13	x: = -1	
eq5: = 9 * eq1 - eq3; 41x + 13y = 37	y: = 6	
eq6: = 13 * eq4 - 5 * eq5; 16x = -16	z : = 2	

4. The process may vary with each student. One process could be:

Process	Solution
eq4: = eq1 - 3 * eq3; 17y + 18z = 14	x: = 12
eq5: = eq2 + 2 * eq3; -4y - 4z = -4	y: = 4
eq6: = 4 * eq4 + 17 * eq5; 4z = -12	z: = -3

5. The process may vary with each student. One process could be:

Process	Solution
eq4: = eq1 + eq3; 7x + y = 19	x: = -3
eq5: = 4eq1 + eq2; 26x + 3y = 42	y: = 40
eq6: = 3eq4 + eq5; 5x = -15	z : = 54

6. The process may vary with each student. One process could be:

Process	Solution
eq4: = eq1 - 3eq2; 8y - x = -7	x : = 2
eq5: = 6eq1 + eq3; 15x - 16y = 42	$\mathbf{y} := -\frac{5}{8}$
eq6: = 15eq4 + eq5; 104x = -65	$z:=-\frac{7}{8}$