Determine Equation of Absolute Value Function Given 3-Noncollinear Points

Directions: Given the 3-noncollinear points, find the absolute value that contains all three points.

Step 1

Start with three distinct noncollinear points.

L7	L1	L2
a	-5	8
b	2	-3
c	4	6

Step 2

Determine where the absolute value function will occur based on the position of the point. In this case, the stronger slope would be the slope of the line between point B and point C.

Step 3

Find the slope of the line BC
$m:=\frac{L 2_{[2]}-L 2_{[3]}}{L 1_{[2]}-L 1_{[3]}}$

Step 4

Find the equations of the two lines with that slope and its negative slope.

Step 5

Determine the intersection point.

Step 6

Use that point of intersection to create an absolute value function.
y1(x):=Side1(x)
y2(x):=Side2(x)
y3(x):=abs(m*(x-IPx))+IPy
*IP stands for Intersection Point.

