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Introduction 
In this activity you will: 

• evaluate definite integrals involving powers of trigonometric functions,  

• derive a recurrence relation, 

• Define a function to verify the results. 

Definite integrals involving powers of the sine function. 
 

Question: 1.   
   

a)  Evaluate each of the following:  

i) ( )2

0
sin x dx



  Answer:     1 ii) ( )22

0
sin x dx



   Answer:      
4


 

iii) ( )32

0
sin x dx



  Answer:      
2

3
 iv) ( )42

0
sin x dx



  Answer:      
3

16


 

v) ( )52

0
sin x dx



  Answer:      
8

15
   

 
b) A recurrence relation is an equation that recursively defines a sequence, the results in Part (a) form such a 

sequence. 

i) Let  ( ) ( )2

0
sinnS n x dx



=   use integration by parts to show that ( ) ( )
1

2
n

S n S n
n

−
= − . 

General Solution:  

1

2

1 2 2

1 2 2

1

sin ( ) sin( )

( 1)cos( )sin ( ) sin( )

cos( )

sin ( ) cos( )sin ( ) ( 1) cos ( )sin ( )

cos( )sin ( ) ( 1) (1 sin ( ))sin ( )

cos( )sin

n

n

n n n

n n

n

udv uv vdu

Let u x dv x

du
n x x v x dx

dx

v x

x dx x x n x x dx

udv x x n x x dx

udv x

−

−

− −

− −

−

= −

= =

= − =

= −

= − + −

= − + − −

= −

 



 

 
2 2

1 2

1 2

( ) ( 1) sin ( ) ( 1) sin ( )

sin ( ) cos( )sin ( ) ( 1) sin ( )

1 ( 1)
sin ( ) cos( )sin ( ) sin ( )

n

n n n

n n n

x n x dx n x dx

n x x x n x dx

n
x x x x dx

n n

−

− −

− −

+ − − −

=− + −

− −
= +
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2  The Power of Trigonometric Integrals 

Specific Solution for the definite integral required:  

2 22

2 2

1 2

00 0

2

0 0

1 ( 1)
sin ( ) cos( )sin ( ) sin ( )

( 1)
sin ( ) sin ( )

n n n

n n

udv uv vdu

n
x x x x dx

n n

n
x x dx

n

 

 

− −

−

= −

− −
 = + 

−
=

 

 

 

 

Where 
2

0
( ) sin ( )nS n x dx



=   then it follows that: 
1

( ) ( 2)
n

S n S n
n

−
= −   

Teacher Notes:  A PowerPoint slide set is provided to step through this integration technique.  

ii) Use the recurrence relation, established in the previous question, to check your answers to (a)(iii)  
and (a)(v). 

Answer:   

( )

1
(3) (1)

2 2
(3) 1

3 3

n
S S

n

S

−
=

= =

    

1
(5) (3)

4 2 8
(5)

5 3 15

n
S S

n

S

−
=

 
= = 

 

  

iii) Use the recurrence relation to find, ( ) ( ) ( ) ( ) ( )6 , 7 , 8 , 9 , 10S S S S S  

Answer:   n = 4 and n = 5 obtained from Part (a). Remaining values determined by recursion. 

n 4 5 6 7 8 9 10 

S(n) 
3

16


 

8

15
  

5

32


 

16

35
 

35

256


 

128

315
 

63

512


 

 

iv) Use CAS to check the values of ( )S n  for 1,2,....,10.n =  

Answer:  Students may use a Notes Application (exact values) or the Graph Application (Sequence), 
The Graph Application will generate approximate values where as the Notes Application or sequence 
command (seqn) work perfectly.  
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3  The Power of Trigonometric Integrals 

 

v) Graph the results for ( )S n  versus n, for 1,2,....,10.n =  

Answer:  

 

vi) Verify that for n even, ( )
2

24

2 1
 

2

n

j

j
n

j
S



=

 
 
 

−
=   and for n odd ( )

1

2

1

2
 
2 1

n

j

S
j

n
j

−

=

 
=  

 +
 , and hence write a 

TI-Nspire function ( not involving definite integrals ) to evaluate ( ).S n  

 Answer:  

 

Definite integrals involving powers of the cosine function. 
 
Question: 2.     

a) Use graphs to help explain why ( ) ( )2 2

0 0
cos sinx dx x dx

 

=   

Answer:  The graph shows the regions are the same. This extends to sin2(x) & cos2(x) … sinn(x) & cosn(x). 
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4  The Power of Trigonometric Integrals 

 

b) Let ( ) ( )2

0
cosnC n x dx



=  , show that ( ) ( )C n S n=  for  1,2,....,5.n =   

Answer:  This example uses the Notes Application, the slider can be used to calculate each value for n. 
 

c) Answer:   
 

  
 
Note:  
The slider generates ‘approximate’ values, so the integral will be approximated if the slider value is used 
directly. In the example shown here an additional maths-box is used: ‘n:=exact(p)’ so the integral will now 
return the exact value.  
 

d) Show that ( ) ( )C n S n=  for all .n Z  

Answer: There are several ways students may ‘show that …’. One option is via substition:  

2 2

2

2

2

2 20 0

2

0

0

cos ( ) sin ( )

1

cos ( ) sin ( )

sin ( )

n n

n n

n

x dx x dx Let u x upper

du
lower

dx

x dx u du

u du These regions are the same.

 







 





= + = + =

= =

=

=

 

 



  

Definite integrals involving powers of the tangent function.  
 

Question: 3.   
   

a)  Evaluate each of the following:  

i) ( )4

0
tan x dx



  Answer:      ( )
1

log 2
2

e  ii) ( )24

0
tan x dx



  Answer:      1
4


−  

iii) ( )34

0
tan x dx



  Answer:      ( )
1 1

log 2
2 2

e−  iv) ( )44

0
tan x dx



  Answer:      
2

4 3


−  

v) ( )54

0
tan x dx



  Answer:      ( )
1 1

log 2
2 4

e −    
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5  The Power of Trigonometric Integrals 

b) Let  ( ) ( )4

0
tannT n x dx



=    show that ( ) ( )
1

2
1

T n T n
n

= − −
−

.  [ Do not use integration by parts ] 

General Solution:  

( )( )

2 2

2 2

2 2 2

2 2

1 2

1 2

tan ( ) tan ( ) tan ( )

tan ( ) sec ( ) 1

tan ( )sec ( ) tan ( )

tan ( ) tan( )

1
tan ( )

1

1
tan ( ) tan ( )

1

n n

n

n n

n n

n n

n n

x dx x x dx

x x dx

x x dx x dx

u du x dx By substitution u x

u x dx
n

x x dx
n

−

−

− −

− −

− −

− −

=

= −

= −

= − =

= −
−

= −
−

 



 

 





 

Specific Solution:  

 

( )
4

4 4

4

1 2

0 0
0

2

0

1
tan ( ) tan tan ( )

1

1
tan ( )

1

n n n

n

x dx x x dx
n

x dx
n


 



− −

−

 
= − − 

= −
−

 



 

4

0
tan ( )

1
( ) ( 2)

1

nLet  T(n)= x

T n T n
n



= − −
−


  

c) Use the recurrence relation obtained in the previous question to check your answers to Q3(a).  

Answer:  Initial terms required ( )
1

(1) log 2
2

eT = and (2) 1
4

T


= −  

Using the recurrence relation: 

 
1 1

(3) log (2)
2 2

eT = −   
1 2

(4) 1
3 4 4 3

T
  

= − − = − 
 

 
1 1 1 1 1

(5) log (2) log (2)
4 2 2 2 4

e eT
 

= − − = − 
 

 

d) Use the recurrence relation to find: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 .T T T T T T T T  

Answer:   

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

13 5 1 76
6 , 7 log 2 , 8 ,

15 4 12 2 4 105

1 7 263 47 1
9 log 2 , 10 , 11 log 2 ,

2 24 315 4 120 2

2578 1 37
12 , 13 log 2

4 3465 2 120

e

e e

e

T T T

T T T

T T

 





= − = − = −

= − = − = −

= − = −
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6  The Power of Trigonometric Integrals 

e) Use CAS to check the values of ( )T n for 1,2,....,13.n =  

Answer:  The previous Notes Application can be editted by changing the function and terminals accordingly.  

 

 

f) Graph the results for ( )T n  versus n, for 1,2,....,10.n =  

Answer:   

 

Plotting the function and using a slider helps see why the results alternate, but still are decreasing.  

   

g) Define the function shown here and use it to verify that  

when n is divisible by 4: ( )
( )

( )
1 1

2

2

0

1
1

2 1 4

n
k

n

k

T n
k


− +

=

 −
 = + −
 +
 

 , 

when n even and not divisible by 4: ( )
( )

( )
1

2

2

0

1
1

2 1 4

n
k

n

k

T n
k


−

=

 −
 = + −
 +
 

 ,  

and, when n is odd:  ( ) ( )
( )

( ) ( )

1

1 12

2 2

1

1 1
1 1 log 2

2 2

n
k

n n

e

k

T n
k

−

− −

=

 −
 = − + −
 
 

 . 
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7  The Power of Trigonometric Integrals 

Answer:  

 

 

 


