The Power of Trigonometric Integrals

Teachers Notes & Answers

7 8 9 10 11 12

Introduction

In this activity you will:

- evaluate definite integrals involving powers of trigonometric functions,
- derive a recurrence relation,
- Define a function to verify the results.

Definite integrals involving powers of the sine function.

Question: 1.

a) Evaluate each of the following:

i)	$\int_0^{\frac{\pi}{2}} \sin(x) dx$	Answer:	1	ii)	$\int_0^{\frac{\pi}{2}} \sin^2(x) dx$	Answer:	$\frac{\pi}{4}$
iii)	$\int_0^{\frac{\pi}{2}} \sin^3(x) dx$	Answer:	$\frac{2}{3}$	iv)	$\int_0^{\frac{\pi}{2}} \sin^4(x) dx$	Answer:	$\frac{3\pi}{16}$
v)	$\int_0^{\frac{\pi}{2}} \sin^5(x) dx$	Answer:	$\frac{8}{15}$				

b) A recurrence relation is an equation that recursively defines a sequence, the results in Part (a) form such a sequence.

i) Let
$$S(n) = \int_0^{\frac{\pi}{2}} \sin^n(x) dx$$
 use integration by parts to show that $S(n) = \frac{n-1}{n} S(n-2)$.

General Solution:

$$\int u dv = uv - \int v du$$
Let $u = \sin^{n-1}(x)$
 $dv = \sin(x)$
 $\frac{du}{dx} = (n-1)\cos(x)\sin^{n-2}(x)$
 $v = \int \sin(x)dx$
 $v = -\cos(x)$

$$\int \sin^n(x)dx = -\cos(x)\sin^{n-1}(x) + (n-1)\int \cos^2(x)\sin^{n-2}(x)dx$$

$$\int u dv = -\cos(x)\sin^{n-1}(x) + (n-1)\int (1-\sin^2(x))\sin^{n-2}(x)dx$$

$$\int u dv = -\cos(x)\sin^{n-1}(x) + (n-1)\int \sin^{n-2}(x)dx - (n-1)\int \sin^2(x)dx$$
 $n\int \sin^n(x) = -\cos(x)\sin^{n-1}(x) + (n-1)\int \sin^{n-2}(x)dx$

$$\int \sin^n(x) = \frac{-1}{n}\cos(x)\sin^{n-1}(x) + \frac{(n-1)}{n}\int \sin^{n-2}(x)dx$$

© Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes provided Author: Raymond Rozen all acknowledgements associated with this material are maintained.

Specific Solution for the definite integral required:

$$\int u dv = uv - \int v du$$

$$\int_{0}^{\frac{\pi}{2}} \sin^{n}(x) = \frac{-1}{n} \Big[\cos(x) \sin^{n-1}(x) \Big]_{0}^{\frac{\pi}{2}} + \frac{(n-1)}{n} \int_{0}^{\frac{\pi}{2}} \sin^{n-2}(x) dx$$

$$\int_{0}^{\frac{\pi}{2}} \sin^{n}(x) = \frac{(n-1)}{n} \int_{0}^{\frac{\pi}{2}} \sin^{n-2}(x) dx$$

Where $S(n) = \int_{0}^{\frac{\pi}{2}} \sin^{n}(x) dx$ then it follows that: $S(n) = \frac{n-1}{n} S(n-2)$

Teacher Notes: A PowerPoint slide set is provided to step through this integration technique.

ii) Use the recurrence relation, established in the previous question, to check your answers to (a)(iii) and (a)(v).

Answer:

$$S(3) = \frac{n-1}{n}S(1)$$

$$S(5) = \frac{n-1}{n}S(3)$$

$$S(3) = \frac{2}{3}(1) = \frac{2}{3}$$

$$S(5) = \frac{4}{5}\left(\frac{2}{3}\right) = \frac{8}{15}$$

iii) Use the recurrence relation to find, S(6), S(7), S(8), S(9), S(10)

Answer: n = 4 and n = 5 obtained from Part (a). Remaining values determined by recursion.

n	4	5	6	7	8	9	10
S(n)	$\frac{3\pi}{16}$	$\frac{8}{15}$	$\frac{5\pi}{32}$	$\frac{16}{35}$	$\frac{35\pi}{256}$	$\frac{128}{315}$	$\frac{63\pi}{512}$

iv) Use CAS to check the values of S(n) for n = 1, 2, ..., 10.

Answer: Students may use a Notes Application (exact values) or the Graph Application (Sequence), The Graph Application will generate approximate values where as the Notes Application or sequence command (seqn) work perfectly.

1.2 1.3 2.1 ▶ sintannpower RAD ☐	×
$\operatorname{seqn}\left(\frac{n-1}{n} \cdot u(n-2), \left\{1, \frac{\pi}{4}\right\}, 10\right)$	
$\left\{1, \frac{\pi}{4}, \frac{2}{3}, \frac{3 \cdot \pi}{16}, \frac{8}{15}, \frac{5 \cdot \pi}{32}, \frac{16}{35}, \frac{35 \cdot \pi}{256}, \frac{128}{315}, \frac{63 \cdot 1}{512}, \frac{128}{512}, 1$	

© Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

v) Graph the results for S(n) versus *n*, for n = 1, 2, ..., 10.

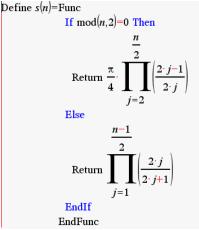
Answer:

		2.1	🕨 sin	tann	pow	er			RAD		×
1.25	sn			u1(/		n-1	- u	1 (n-	-2)		
1.00	•					+					
0.75		+	+								
0.50				÷	t	÷	•	+	+	-	
0.25										+	
-1	1	2	3	4	5	6	7	8	9	10	ⁿ

vi) Verify that for *n* even, $S(n) = \frac{\pi}{4} \prod_{j=2}^{\frac{n}{2}} \left(\frac{2j-1}{2j}\right)$ and for *n* odd $S(n) = \prod_{j=1}^{\frac{n-1}{2}} \left(\frac{2j}{2j+1}\right)$, and hence write a

TI-Nspire function (not involving definite integrals) to evaluate S(n).

Answer:



Definite integrals involving powers of the cosine function.

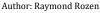
Question: 2.

a) Use graphs to help explain why $\int_0^{\frac{\pi}{2}} \cos(x) dx = \int_0^{\frac{\pi}{2}} \sin(x) dx$

Answer: The graph shows the regions are the same. This extends to $\sin^2(x) \& \cos^2(x) \dots \sin^n(x) \& \cos^n(x)$.

	rad 📘 🗙	◀ 5.1	6.1 6.2 > sintannpower	rad 📘 🗙
$f1(x)=(\cos(x))^n$	< > n =1.		$\int_{1}^{y} \mathbf{f1}(x) = (\cos(x))^{\mathbf{n}}$	< > n =2.
	×			×
$\frac{\pi}{4}$ $\frac{\pi}{2}$	<u>3-π</u> 4		$\frac{\pi}{4}$ $\frac{\pi}{2}$	$\frac{3 \cdot \pi}{4}$
$\mathbf{f2}(x) = (\sin(x))^{\mathbf{n}}$	n =1.		$\int_{-\infty}^{\infty} \mathbf{f}_2(x) = (\sin(x))^{\mathbf{n}}$	< > n =2.
	×			×
$\frac{\pi}{4}$ $\frac{\pi}{2}$	$\frac{3 \cdot \pi}{4}$		<u>π</u> <u>π</u> 4 2	3·π 4

© Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.



- b) Let $C(n) = \int_0^{\frac{\pi}{2}} \cos^n(x) dx$, show that C(n) = S(n) for n = 1, 2, ..., 5. **Answer:** This example uses the Notes Application, the slider can be used to calculate each value for *n*.
- c) Answer:

3.1 4.1 4.2 ▶ sintannpower	rad 📘 🗙
∫π	
$\frac{\pi}{2}$	
$(\cos(x))^{\mathbf{n}} dx + \frac{2}{2}$	
J 0 3	
$n:=exact(\mathbf{p}) + 3$	
$\langle \rangle \mathbf{p} = 3.$	

Note:

The slider generates 'approximate' values, so the integral will be approximated if the slider value is used directly. In the example shown here an additional maths-box is used: 'n:=exact(p)' so the integral will now return the exact value.

d) Show that C(n) = S(n) for all $n \in Z$. Answer: There are several ways students may 'show that ...'. One option is via substition: $\int_{0}^{\frac{\pi}{2}} \cos^{n}(x) dx = \int_{0}^{\frac{\pi}{2}} \sin^{n}(x + \frac{\pi}{2}) dx \qquad Let \ u = x + \frac{\pi}{2} \qquad upper = \pi$ $\frac{du}{dx} = 1 \qquad lower = \frac{\pi}{2}$ $\int_{0}^{\frac{\pi}{2}} \cos^{n}(x) dx = \int_{\frac{\pi}{2}}^{\pi} \sin^{n}(u) du$ $= \int_{0}^{\frac{\pi}{2}} \sin^{n}(u) du \qquad These regions are the same.$

Definite integrals involving powers of the tangent function.

Question: 3.

- a) Evaluate each of the following:
 - i) $\int_{0}^{\frac{\pi}{4}} \tan(x) dx$ Answer: $\frac{1}{2} \log_{e}(2)$ ii) $\int_{0}^{\frac{\pi}{4}} \tan^{2}(x) dx$ Answer: $1 \frac{\pi}{4}$ iii) $\int_{0}^{\frac{\pi}{4}} \tan^{3}(x) dx$ Answer: $\frac{1}{2} - \frac{1}{2} \log_{e}(2)$ iv) $\int_{0}^{\frac{\pi}{4}} \tan^{4}(x) dx$ Answer: $\frac{\pi}{4} - \frac{2}{3}$ v) $\int_{0}^{\frac{\pi}{4}} \tan^{5}(x) dx$ Answer: $\frac{1}{2} \log_{e}(2) - \frac{1}{4}$

General Solution:

$$\int \tan^{n}(x)dx = \int \tan^{n-2}(x)\tan^{2}(x)dx$$

= $\int (\tan^{n-2}(x)(\sec^{2}(x)-1))dx$
= $\int \tan^{n-2}(x)\sec^{2}(x)dx - \int \tan^{n-2}(x)dx$
= $\int u^{n-2}du - \int \tan^{n-2}(x)dx$ By substitution $u = \tan(x)$
= $\frac{1}{n-1}u^{n-1} - \int \tan^{n-2}(x)dx$
= $\frac{1}{n-1}\tan^{n-1}(x) - \int \tan^{n-2}(x)dx$

Specific Solution:

$$\int_{0}^{\frac{\pi}{4}} \tan^{n}(x) dx = \left[\frac{1}{n-1} \tan^{n-1}(x)\right]_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} \tan^{n-2}(x) dx$$
$$= \frac{1}{n-1} - \int_{0}^{\frac{\pi}{4}} \tan^{n-2}(x) dx$$

Let
$$T(n) = \int_0^{\frac{\pi}{4}} \tan^n(x)$$

 $T(n) = \frac{1}{n-1} - T(n-2)$

c) Use the recurrence relation obtained in the previous question to check your answers to Q3(a).

Answer: Initial terms required $T(1) = \frac{1}{2}\log_e(2)$ and $T(2) = 1 - \frac{\pi}{4}$

Using the recurrence relation:

$$T(3) = \frac{1}{2} - \frac{1}{2}\log_e(2) \qquad T(4) = \frac{1}{3} - \left(1 - \frac{\pi}{4}\right) = \frac{\pi}{4} - \frac{2}{3}$$
$$T(5) = \frac{1}{4} - \left(\frac{1}{2} - \frac{1}{2}\log_e(2)\right) = \frac{1}{2}\log_e(2) - \frac{1}{4}$$

d) Use the recurrence relation to find: T(6), T(7), T(8), T(9), T(10), T(11), T(12), T(13).

Answer:

$$T(6) = \frac{13}{15} - \frac{\pi}{4}, \qquad T(7) = \frac{5}{12} - \frac{1}{2}\log_e(2), \qquad T(8) = \frac{\pi}{4} - \frac{76}{105},$$

$$T(9) = \frac{1}{2}\log_e(2) - \frac{7}{24}, \qquad T(10) = \frac{263}{315} - \frac{\pi}{4}, \qquad T(11) = \frac{47}{120} - \frac{1}{2}\log_e(2),$$

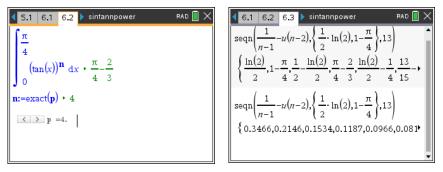
$$T(12) = \frac{\pi}{4} - \frac{2578}{3465}, \qquad T(13) = \frac{1}{2}\log_e(2) - \frac{37}{120}$$

© Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: Raymond Rozen

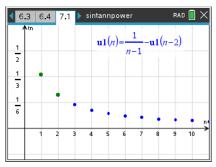
e) Use CAS to check the values of T(n) for n = 1, 2, ..., 13.

Answer: The previous Notes Application can be editted by changing the function and terminals accordingly.



f) Graph the results for T(n) versus *n*, for n = 1, 2, ..., 10.

Answer:



Plotting the function and using a slider helps see why the results alternate, but still are decreasing.

€ 6.4 7.1 8.1 Sintannpower	rad 📋 🗙	6.4 7.1 8.1 ▶ sintann;	power RAD 📋 🗙	6.4 7.1 8.1 ▶ sintann	power RAD 🗍 🗙
^ ⊻		<u> </u>	У	A	У
				_	
$x = \frac{-\pi}{2}$	$x=\frac{\pi}{2}$	$x = \frac{-\pi}{1}$	$x=\frac{\pi}{2}$	$x = \frac{-\pi}{2}$	$x = \frac{\pi}{2}$
2	2 ×	2	2 ×	2	2 ×
$\frac{-\pi}{2}$ $\frac{-\pi}{4}$		$\frac{-\pi}{2}$ $\frac{-\pi}{4}$		$\frac{-\pi}{2}$ $\frac{-\pi}{4}$	
$f1(x) = (tan(x))^n$ -1 0.1534		$\mathbf{f1}(x) = (\tan(x))^{-1}$		$f1(x) = (tan(x))^n - 1$ 0.0966	
0.1534	$\langle \rangle$ n =3.	0.1187	$\langle \rangle$ n =4.	0.0966	< > n =5.

g) Define the function shown here and use it to verify that

when *n* is divisible by 4: $T(n) = \sum_{k=0}^{\frac{n}{2}-1} \left(\frac{(-1)^{k+1}}{2k+1} \right) + (-1)^{\frac{n}{2}} \frac{\pi}{4}$, when *n* even and not divisible by 4: $T(n) = \sum_{k=0}^{\frac{n}{2}-1} \left(\frac{(-1)^k}{2k+1} \right) + (-1)^{\frac{n}{2}} \frac{\pi}{4}$, and, when *n* is odd: $T(n) = (-1)^{\frac{n-1}{2}} \sum_{k=1}^{\frac{n-1}{2}} \left(\frac{(-1)^k}{2k} \right) + (-1)^{\frac{n-1}{2}} \frac{1}{2} \log_e(2)$.

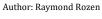
© Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: Raymond Rozen

Answer:

Define
$$t(n)$$
=Func
If $\operatorname{mod}(n,4)=0$ Then
Return $\sum_{k=0}^{\frac{n}{2}-1} \left(\frac{(-1)^{k+1}}{2 \cdot k+1}\right) + \frac{(-1)^{\frac{n}{2}} \cdot \pi}{4}$
EndIf
If $\operatorname{mod}(n,2)=0$ and $\operatorname{mod}(n,4)\neq 0$ Then
Return $\sum_{k=0}^{\frac{n}{2}-1} \left(\frac{(-1)^k}{2 \cdot k+1}\right) + \frac{(-1)^{\frac{n}{2}} \cdot \pi}{4}$
EndIf
If $\operatorname{mod}(n,2)=1$ Then
Return $(-1)^{\frac{n-1}{2}} \cdot \sum_{k=1}^{\frac{n-1}{2}} \left(\frac{(-1)^k}{2 \cdot k}\right) + \frac{(-1)^{\frac{n-1}{2}} \cdot 1}{2} \cdot \ln(2)$
EndIf
EndIf
EndIf
EndIf
EndIf
EndIf

© Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes provided Author: Ray all acknowledgements associated with this material are maintained.



TEXAS INSTRUMENTS