Rotations：Lesson 6 Distance to Vertices Student Activity

\qquad
\qquad

In this lesson，you will investigate the distances from the point of rotation to each of the vertices of rotated triangles and look for patterns．Open the document：Rotations．tns．
It is important that the Rotations Tour be done before any
Rotations lessons．

Move to page 1．3．（ ctri two times）
On the handheld，press and atrld to navigate through the pages of the lesson．
（On the $\mathrm{iPad}^{\circledR}$ ，select the page thumbnail in the page sorter panel．）
1．Click on or press $⿴ 囗 十$ to rotate $\triangle \mathrm{ABC} 45^{\circ}$ about point P ．
Look at segments：$\overline{P A}$ and $\overline{P A^{\prime}}$ ．
What seems to be true about the lengths of $\overline{P A}$ and $\overline{P A^{\prime}}$ ？
Discuss in your groups．
Grab point $A(\boxed{A})$ and move it about the screen．

（1．1）$\left.1.2\right\|^{1.3}$	
¢ ¢゚¢－	／$\bigcirc \bigcirc$（ © © Resel
＜Prev Next	O．

Click on or press \mathbb{Q} to rotate $\triangle \mathrm{ABC}$ an additional 45° ．
Grab point $\mathrm{A}(\mathbb{A})$ and move it about the screen．
Make a conjecture about the lengths of $\overline{P A}$ and $\overline{P A^{\prime}}$ ．

2．Reset the page．Press

Reset（ctrid dell）．

a．Each person in the group select one of the pairs of segments to observe：
i）the lengths of $\overline{P B}$ and $\overline{P B^{\prime}}$ ii）the lengths of $\overline{P C}$ and $\overline{P C^{\prime}}$

Click on or press \square to rotate $\triangle \mathrm{ABC} 45^{\circ}$ about point P ．
Look at the lengths of segments：i）$\overline{P B}$ and $\overline{P B^{\prime}}$ or ii）$\overline{P C}$ and $\overline{P C^{\prime}}$ ．
What seems to be true about the lengths of：i）$\overline{P B}$ and $\overline{P B^{\prime}}$ or ii）$\overline{P C}$ and $\overline{P C^{\prime}}$ ？
Discuss in your groups．
Grab either point B（B）or point C（C）and move it about the screen．

Rotations：Lesson 6 Distance to Vertices Student Activity

b．Click on or press $⿴ 囗+$ to rotate $\triangle \mathrm{ABC}$ an additional 45° ． Grab either point $B(\mathbb{B})$ or point $C(\mathbb{C})$ and move it about the screen．
c．Make a conjecture about the lengths of：i）$\overline{P B}$ and $\overline{P B^{\prime}}$ or ii）$\overline{P C}$ and $\overline{P C^{\prime}}$ ．

3．Reset the page．Press Reset（atrldel）．
a．Click on or press $⿴ 囗$ to rotate $\triangle \mathrm{ABC} 45^{\circ}$ about point P ．

To assist in validating your conjectures，do the following：
Click on the Multiple Icon \square or press \boldsymbol{M} ．Press the down arrow（ $\boldsymbol{\nabla}$ ）once and press the space bar（ \square ）to select the second choice in the dropdown menu．
Discuss in your groups what is displayed on the screen．
b．Three dashed circles appeared on the screen．The circles all have the same center，P，but have different radii．They are called concentric circles．
c．Continue to rotate $\triangle \mathrm{ABC}$ about point P until it shows 360° on the screen．
Look at $\overline{P A}$ and $\overline{P A^{\prime}}, \overline{P B}$ and $\overline{P B^{\prime}}$ ，and $\overline{P C}$ and $\overline{P C^{\prime}}$ as you rotate $\triangle \mathrm{ABC}$ ．
d．To see all previous images，open the Options menu（press or（0）．
Use the directional arrows（ $\boldsymbol{\bullet} \boldsymbol{4}$ ）to move to the box next to＂Historical Images＂． Press the space bar key（ \triangle ）to put a check mark in the box．Press enter or ese ．
Observe the screen．
e．Click on or press $⿴ 囗+$ to rotate $\triangle \mathrm{ABC} 45^{\circ}$ about point P ．
Continue to rotate $\triangle A B C$ about point P until it shows 360° on the screen． Look at $\overline{P A}$ and $\overline{P A^{\prime}}, \overline{P B}$ and $\overline{P B^{\prime}}$ ，and $\overline{P C}$ and $\overline{P C^{\prime}}$ as you rotate $\triangle \mathrm{ABC}$ ．
f．Discuss in your groups how the concentric circles can help convince you why your conjecture is true．
4. Press menu to open the menu.
(On the iPad, tap the wrench icon to open the menu.)
Press 1 (1: Templates), 4 (4: Dist P to Vertices).
Click on or press \mathbb{Q} to rotate $\triangle \mathrm{ABC} 45^{\circ}$ about point P.
a. Record the Original lengths (first lengths displayed) in the first row of the table below.

Look for patterns.
b. Investigate and mentally make note of the lengths by grabbing and moving each of the three vertices of $\triangle \mathrm{ABC}(\mathbb{A}, \mathrm{B}, \mathbb{C})$ to create different shaped triangles.
Record a set of data observed in row "Figure 1" in the following table.
Repeat and move each of the three vertices and record a set of data in row "Figure 2" below.
Look for patterns among the lengths of corresponding sides.

Rotate 45	PA	PB	PC	PA^{\prime}	PB^{\prime}	PC^{\prime}
Original						
Figure 1						
Figure 2						

c. Based upon the data in the table above, make a conjecture.
5. Reset the page. Press Reset (atrl dell).
a. Each person in the group will select a different angle for the step size ($6^{\circ} 45^{\circ} \checkmark$ or press 国).
i) 30°
ii) 60°
iii) -60°
iv) -45°

Press the space bar (\square) to select that measure and to close the menu.
b. Click on or press \square to rotate $\triangle \mathrm{ABC}$ about point P through the angle you chose.

Record the Original lengths (first lengths displayed) in the first row of the following table.
Look for patterns.
c. To see all previous images, open the Options menu (press or © $\mathbf{0}$).

Use the directional arrows ($\boldsymbol{\bullet} \boldsymbol{\downarrow}$) to move to the box next to "Historical Images".
Press the space bar key (Δ) to put a check mark in the box. Press enter or esed.
\qquad
\qquad

Click on the Multiple Icon or press \boldsymbol{m}. Press the down arrow ($\boldsymbol{\nabla}$) once and press the space bar (\triangle) to select the second choice in the dropdown menu.
d. Investigate and mentally make note of the lengths by grabbing and moving each of the three vertices of $\Delta \mathrm{ABC}(\mathbb{A},[\mathbf{B}, \mathbb{C})$ to create different shaped triangles.
Record a set of data observed in row "Figure 1 " in the following table.
Repeat and move each of the three vertices and record a set of data in row "Figure 2" below.
Look for patterns among the lengths of corresponding sides.

Circle: i ii iii iv	PA	PB	PC	PA' $^{\prime}$	PB'	PC' $^{\prime}$
Original						
Figure 1						
Figure 2						

e. Continue to rotate $\triangle \mathrm{ABC}$ about point P until it shows 360° on the screen. Look at $\overline{P A}$ and $\overline{P A^{\prime}}, \overline{P B}$ and $\overline{P B^{\prime}}$, and $\overline{P C}$ and $\overline{P C^{\prime}}$ as you rotate $\triangle \mathrm{ABC}$.
f. Based upon the data in the table above, is your conjecture still true?
6. \triangle DEF has been rotated 65° about point Z. Answer the following questions.
a. List 3 pairs of segments that have point Z as one of the endpoints that are congruent.
b. If $Z D=5 \mathrm{~cm}$, then \qquad $=5 \mathrm{~cm}$.
c. If $Z E^{\prime}=4$ in, then \qquad $=4 \mathrm{in}$.
7. Define concentric circles.

