

Name

Student Activity

Class

In this lesson, you will investigate the distances from the point of rotation to each of the vertices of rotated triangles and look for patterns. Open the document: Rotations.tns.

It is important that the Rotations Tour be done before any Rotations lessons.

> PLAY INVESTIGATE EXPLORE DISCOVER

@ Q Q

Move to page 1.3. (ctrl ▶ two times)

On the handheld, press [ttr] ▶ and [trr] ◀ to navigate through the pages of the lesson. (On the iPad[®], select the page thumbnail in the page sorter panel.)

or press \mathbf{Q} to rotate Δ ABC 45° about point P.

Look at segments: PA and PA'.

What seems to be true about the lengths of PA and PA'?

Discuss in your groups.

Grab point A (A) and move it about the screen.

or press \mathbf{Q} to rotate Δ ABC an additional 45°.

Grab point A (A) and move it about the screen.

Make a conjecture about the lengths of PA and PA'.

- a. Each person in the group select one of the pairs of segments to observe:

i) the lengths of PB and PB' ii) the lengths of PC and PC'

Click on \bigcirc or press \bigcirc to rotate \triangle ABC 45° about point P.

Look at the lengths of segments: i) \overline{PB} and $\overline{PB'}$ or ii) \overline{PC} and $\overline{PC'}$.

What seems to be true about the lengths of: i) \overline{PB} and \overline{PB} ' or ii) \overline{PC} and \overline{PC} '?

Discuss in your groups.

Grab either point B (B) or point C (C) and move it about the screen.

Name	

Student Activity

	Class	Class	Class	Class
	Class	Class	Class	Class
		Class	Ciass	Class
(1266			Olass	
(1)266				
Class				

- b. Click on or press Q to rotate Δ ABC an additional 45°.
 Grab either point B (B) or point C (C) and move it about the screen.
- c. Make a conjecture about the lengths of: i) \overline{PB} and \overline{PB} or ii) \overline{PC} and \overline{PC} .

- 3. Reset the page. Press Reset ([ctrl] [del]).
 - a. Click on $^{\bigcirc}$ or press \bigcirc to rotate \triangle ABC 45 $^{\circ}$ about point P.

To assist in validating your conjectures, do the following:

Click on the Multiple Icon or press \blacksquare . Press the down arrow (\blacktriangledown) once and press the space bar (\boxdot) to select the second choice in the dropdown menu.

Discuss in your groups what is displayed on the screen.

- b. Three dashed circles appeared on the screen. The circles all have the same center, P, but have different radii. They are called **concentric circles**.
- c. Continue to rotate \triangle ABC about point P until it shows 360° on the screen. Look at \overline{PA} and \overline{PA} , \overline{PB} and \overline{PB} , and \overline{PC} and \overline{PC} as you rotate \triangle ABC.
- d. To see all previous images, open the Options menu (press or o).
 Use the directional arrows (→ ▼ ♦) to move to the box next to "Historical Images".
 Press the space bar key () to put a check mark in the box. Press enter or esc .
 Observe the screen.
- e. Click on or press \bigcirc to rotate \triangle ABC 45° about point P. Continue to rotate \triangle ABC about point P until it shows 360° on the screen. Look at \overline{PA} and \overline{PA} , \overline{PB} and \overline{PB} , and \overline{PC} and \overline{PC} as you rotate \triangle ABC.
- f. Discuss in your groups how the concentric circles can help convince you why your conjecture is true.

Name ____

Student Activity

Class _____

4. Press menu to open the menu.

(On the iPad, tap the wrench icon to open the menu.)

Press 1 (1: Templates), 4 (4: Dist P to Vertices).

Click on \bigcirc or press \bigcirc to rotate \triangle ABC 45° about point P.

- a. Record the Original lengths (first lengths displayed) in the first row of the table below. Look for patterns.
- b. Investigate and mentally make note of the lengths by grabbing and moving each of the three vertices of Δ ABC (\overline{A} , \overline{B} , \overline{C}) to create different shaped triangles.

Record a set of data observed in row "Figure 1" in the following table.

Repeat and move each of the three vertices and record a set of data in row "Figure 2" below. Look for patterns among the lengths of corresponding sides.

Rotate 45°	PA	РВ	PC	PA'	PB'	PC'
Original						
Figure 1						
Figure 2						

- c. Based upon the data in the table above, make a conjecture.
- 5. Reset the page. Press Reset (ctrl del).
 - a. Each person in the group will select a different angle for the step size (60° or press E). i) 30° ii) 60° iii) -60° iv) -45°

Press the space bar () to select that measure and to close the menu.

- b. Click on or press to rotate Δ ABC about point P through the angle you chose.
 Record the Original lengths (first lengths displayed) in the first row of the following table.
 Look for patterns.
- c. To see all previous images, open the Options menu (press or o).
 Use the directional arrows (▲ ▼ () to move to the box next to "Historical Images".
 Press the space bar key () to put a check mark in the box. Press enter or esc .

Name	

Student Activity

|--|--|

Click on the Multiple Icon or press M . Press the down arrow (▼) once and press the space bar (□) to select the second choice in the dropdown menu.

d. Investigate and mentally make note of the lengths by grabbing and moving each of the three vertices of Δ ABC (A, B, C) to create different shaped triangles.
Record a set of data observed in row "Figure 1" in the following table.
Repeat and move each of the three vertices and record a set of data in row "Figure 2" below.
Look for patterns among the lengths of corresponding sides.

Circle:	PA	РВ	PC	PA'	PB'	PC'
Original						
Figure 1						
Figure 2						

- e. Continue to rotate \triangle ABC about point P until it shows 360° on the screen. Look at \overline{PA} and \overline{PA} , \overline{PB} and \overline{PB} , and \overline{PC} and \overline{PC} as you rotate \triangle ABC.
- f. Based upon the data in the table above, is your conjecture still true?
- 6. \triangle DEF has been rotated 65° about point Z. Answer the following questions.
 - a. List 3 pairs of segments that have point Z as one of the endpoints that are congruent.
 - b. If ZD = 5 cm, then _____ = 5 cm.
 - c. If ZE' = 4 in, then _____ = 4 in.
- 7. Define concentric circles.