

Thursday Night Precalculus Series February 8, 2024

In this *AP Precalculus Live* session, we will explore several examples on solving trigonometric equations and inequalities using both a restricted domain and finding all solutions. We will rewrite trigonometric expressions using trigonometric identities.

About the Lesson

- This Teacher Notes guide is designed to be used in conjuction with the AP Precalculus Live session and Student Problems document that can be found on-demand: <u>https://www.youtube.com/watch?v=D61KxiGWlwg</u>
 - Please note that not all problems/content from the Student Problem Sheet is covered in the video component. Student/Teacher Notes are also useful without students viewing the "Live Session" but can be enriched by that resource.
- This session involves solving trigonometric equations and inequalities. It also involves rewriting trigonometric expressions in equivalent forms.
- The trigonometric identities used include:
 - o The Pythagorean identities,
 - The sum and difference identities for sine and cosine,
 - The double angle identities for sine and cosine.
- Students should be able to use the TI-Nspire to check solutions to equations and inequalities as well as confirm the equivalence of representations of trigonometric functions.
 - **Class Discussion**: Use these questions to help students communicate their understanding of the problem. These questions are presented in the *Live* video as well.

AP Precalculus Learning Objectives

- 3.10.A: Solve equations and inequalities involving trigonometric functions.
- 3.12.A: Rewrite trigonometric expressions in equivalent forms with the Pythagorean identity.
- 3.12.B: Rewrite trigonometric expressions in equivalent forms with sine and cosine sum identities.

TRIGONOMETRIC IDENTITIES, EQUATIONS, AND INEQUALITIES TEACHER NOTES



Materials:

TI-Nspire document

- Trig_Eq,_Ineq,_Identities.tns Student document
- Problems_02_08 Solutions
- Precal_problems_solutions_ 02_08

YouTube

 <u>https://www.youtube.com/w</u> atch?v=D61KxiGWlwg

• 3.12.C: Solve equations using equivalent analytic representations of trigonometric functions.

Source: AP Precalculus Course and Exam Description, The College Board

Problem 1.

- (a) Find all the values of x that satisfy the equation $\sqrt{2}\cos(4x)+1=0$.
- (b) Find all the values of x in the interval $0 \le x \le \pi$ that satisfy the inequality $\sqrt{2}\cos(4x) + 1 < 0$.

Sample Solution:

Refer to the Teacher Solutions Document for the full solution to this problem.

Teacher Tip: Students need practice with solving equations or inequalities with x as the argument of the trigonometric function. Students should then progress to equations or inequalities with $a \cdot x$ as the argument, such as the equation in 1. (a).

Class Discussion:

We have two intervals as solutions to the inequality when the closed interval is $0 \le x \le \pi$. If the closed interval is changed to $0 \le x \le 2\pi$, how many intervals would we have as solutions to the inequality?

Possible Answers: There would be four intervals as solutions to the inequality if the closed interval is now $0 \le x \le 2\pi$.

Class Discussion:

What is the period of the function $f(x) = \sqrt{2}\cos(4x) + 1$?

Possible Answers: The period is $\frac{\pi}{2}$.

Teacher Tip: Revisit these discussions as we work through the graphing calculator solutions.

Graph the function $f(x) = \sqrt{2}\cos(4x) + 1$.

Use the Window Settings shown to the right. If we set the

xScale to $\frac{\pi}{16}$, we can see that the two zeros of the function in

the interval $0 \le x \le \pi$ are $\frac{3\pi}{16}$ and $\frac{5\pi}{16}$.

Technology Tip: It is possible to set the attributes on the x-axis to show the values at the tick marks as shown to the right.

To verify the solutions to the inequality in 1. (b), graph the trigonometric function $f(x) = \sqrt{2}\cos(4x) + 1$ on the given closed interval $0 \le x \le \pi$. Use piecewise functions as shown to verify that the solution to the inequality consists of two intervals.

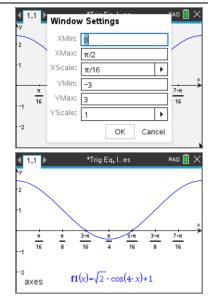
Review the Class Discussion since the graph confirms the four intervals on $0 \le x \le 2\pi$.

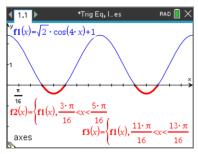
Class Discussion:

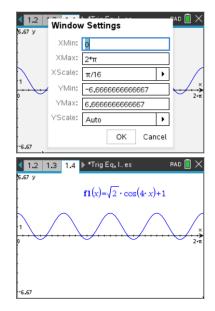
We have two intervals as solutions to the inequality when the closed interval is $0 \le x \le \pi$. If the closed interval is changed to $0 \le x \le 2\pi$, how many intervals would we have as solutions to the inequality?

Possible Answers: There would be four intervals as solutions to the inequality if the closed interval is now $0 \le x \le 2\pi$.

TRIGONOMETRIC IDENTITIES, EQUATIONS, AND INEQUALITIES TEACHER NOTES







Problem 2.

- (a) Find all the values of x that satisfy the equation $\frac{1}{\sqrt{3}}\sin(2x) \frac{1}{2} = 0$.
- (b) Find all the values of x in the interval $0 \le x \le 2\pi$ that satisfy the inequality $\sin(2x) < \cos x$.

Sample Solution:

Refer to the Teacher Solutions Document for the full solution to this problem.

Class Discussion:

In 2. (b) analytical solution of $2\sin x \cos x < \cos x$, why can't we divide both sides by $\cos x$?

Possible Answers: One issue is that there are values of x for which $\cos x = 0$. We also want to use the zero product property with sign charts.

Teacher Tip: Sign charts are helpful with solving inequalities.

Use the graphing application to confirm the solution. Graph the two functions on windows shown to the right. Use an XScale of $\frac{\pi}{6}$

Trace will also be useful to check the intervals.

<u>Technology Tip</u>: Set the Trace to $\frac{\pi}{6}$.

1.3 Window	v Settings	BAD 🚺 🗙
f XMin: XMax: XScale: YMin: YMin: YMin: YScale:	2*π π/6 -6.66666666666666 6.666666666666 6.66666666666	×
1.3 1.4 1.5	▶ *Trig Eq, Ies	rad 🚺 🗙
$f4(x)=sin(2 \cdot x)$ $\frac{\pi}{6}$ $f5(x)=cos(x)$		
1.3 1.4 1.5	▶ *Trig Eq, Ies	rad 🚺 🗙
Trace St	-	

Problem 3.

What are all the values of θ , $0 \le \theta \le \pi$, for which $2\sin(2\theta) \ge 1$ and $2\cos\theta \ge 1$?

Sample Solution:

Refer to the Teacher Solutions Document for the full solution to this problem.

Class Discussion:

In previous problems, we added 2π to the endpoints for an additional interval. Why didn't we do that here?

Possible Answers: We have a restricted domain. We can check the interval where 2π was added to the endpoints to obtain $\frac{13\pi}{12} \le \theta \le \frac{17\pi}{12}$. This interval is not in the given domain.

Problem 4.

(a) Rewrite as an expression in which $\cos x$ appears once and no other trigonometric functions are involved.

 $\frac{1}{1-\sin x} + \frac{1}{1+\sin x}$

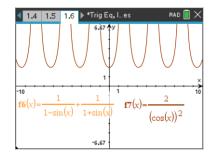
(b) Rewrite as an expression in which $\sin x$ appears once and no other trigonometric functions are involved.

 $3\sin x - 4\sin^3 x$

Sample Solution:

Refer to the Teacher Solutions Document for the full solution to this problem.

For 4. (a), graph the initial expression and the rewritten expression to verify the solution. Use a Zoom Trig window. The two graphs should match.



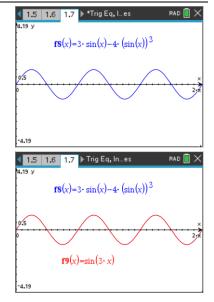
TRIGONOMETRIC IDENTITIES, EQUATIONS, AND INEQUALITIES TEACHER NOTES

For 4. (b), use Xmin = 0 and Xmax = 2π .

Class Discussion:

In 4. (b) we only graphed the first function. How many cycles do we see in the interval from x = 0 to $x = 2\pi$? How could this information be used to determine the sin function that is represented in the rewrite?

Possible Answers: There are three (3) cycles shown in the interval from x = 0 to $x = 2\pi$. The sine function would be $y = \sin(3x)$. Graphing would confirm.



Note: The following problems, 5 and 6, are not discussed in the video.

Problem 5. Suppose $\sin x = \frac{1}{3}$ and $\cos y = \frac{1}{4}$, where x and y are in the interval $\left(0, \frac{\pi}{2}\right)$. Evaluate the expression $\sin(x-y)$.

Sample Solution:

Refer to the Teacher Solutions Document for the full solution to this problem.

Problem 6.

The function *f* is given by $f(x) = \cos(2.5x - 0.15)$. The function *g* is given by g(x) = f(x-0.5). What are the zeros of *g* on the interval $0 \le x \le \pi$?

Sample Solution:

Refer to the Teacher Solutions Document for the full solution to this problem.

Wrap Up

Upon completion of the discussion, the teacher should ensure that students understand:

- The graphing application can be used to verify solutions to both equations and inequalities.
- The calculator application can be used to solve equations.
- The graphing application is useful in verifying equivalence of trigonometric expressions.

For more videos from the AP Precalculus Live series, visit our playlist https://www.youtube.com/playlist?list=PLQa_6aWmaC6B-5h5n2Cr5h3G2ZPfJ0HGI

**Note: This activity has been developed independently by Texas Instruments. AP is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product. Policies subject to change. <u>Visit www.collegeboard.org.</u>