Dog Run

by Mary Bourassa

Activity overview

This activity allows students to investigate the maximum area of a rectangle of fixed perimeter.

Concepts

- Data collection
- Scatter plots
- Modelling

Teacher preparation

Download the dogrun.tns file and send it to the handhelds.

Classroom management tips

Students should be able to complete this activity individually. The teacher can get them to change the perimeter of the rectangle before beginning the investigation so that students are working with different values from one another. All questions can be answered on the handheld.

TI-Nspire Applications

- Graphs \& Geometry
- Lists \& Spreadsheet
- Calculator
- Notes

Step-by-step directions
All of the instructions are contained in the .tns file (see screenshots below). The data collected should look like this:

Students should discover that the optimal shape is a square.

Assessment and evaluation

- This activity is intended as an investigation. Teachers may wish to assess whether students have completed the activity.

Student TI-Nspire Document: dog run.tns

THE DOG RUN

Optimizing Rectangles

Press CTRL and the right arrow to move to the next page.

1.1	1.2	1.3	1.4
RAD AUTO REAL			
As you moved point D you collected data on			
the length of the rectangle and its area as			
shown on the next page.			
A scatter plot has been created on page 1.6			
with length as the independent variable and			
rec_area as the dependent variable.			

\section*{| 1.4 | 1.5 | 1.6 | 1.7 | RAD AUTO REAL |
| :--- | :--- | :--- | :--- | :--- |}

Perform a quadratic regression on the data: from the Statistics menu choose Stat Calculations then Quadratic Regression. Choose length as X-list and rec_area as Y -list then press ENTER.

1.7	1.8	1.9	1.10	RAD AUTO REAL
Question				
What is the length of the rectangle of maximum area?				
Answer				

1.9 1.10 1.11 1.12	RAD AUTO REAL	\square
Question		
What is your conclus	on for Mr. Peters?	
Answer	\star	

