Ages 17-19 - CAS your girl friend

A young man is saying good-bye to his girl friend at the platform just outside the last door at the back of a train. When the train signals departure he is kissing her so warmly that he does not hear the signal. We assume that the train has a constant acceleration of $a=0.40 \mathrm{~m} / \mathrm{s}^{2}$ and that he starts running at a constant speed 6.0 s after the train began accelerating. Can he catch the train?

All distances are in meters and time in seconds.
The train starts at $t=0$ at the position $y=0$.
The young man runs at the constant speed $v \mathrm{~m} / \mathrm{s}$.
The position of the train door at time t is given by: $\quad y=y 1=\frac{1}{2} a t^{2}=0.20 \cdot t^{2}$.
The position of the young man at time t is given by: $y=y 2=v \cdot(t-6)$.
We will now analyse this situation in three ways.

1. CAS the train 1 (using no calculus)

The graphs below show the distances as a function of time if the man runs at $v=6.0 \mathrm{~m} / \mathrm{s}$:

We see that in this case he has 2 opportunities to catch the train. If he runs too slowly, he will not be able to catch the train. The minimum speed $v_{\text {min }}$ can be found by using the fact that in this case the equation $y 1=y 2$ has one and only one solution for t. First solve the equation $y 1=y 2$ with any speed v to find the two solutions for t. Then find v such that the two t-values are equal.

Thus the minimum speed in order to catch the train is $v_{\text {min }}=4.8 \mathrm{~m} / \mathrm{s}$ (the solution $v=0$ makes no sense). Again, we solve the equation $y 1=y 2$ for t, this time with $v=4.8$.

$\begin{aligned} & \left.- \text { solve[. } \cdot 2 \cdot t^{2}=v \cdot(t-6), t\right] \\ & t=2.5 \cdot \sqrt{v} \cdot \sqrt{v-4.8}+2.5 \cdot v \text { or } t=2.5 \cdot v-v \end{aligned}$
$\frac{(0)}{\text { Hill }}$

We can now conclude that the minimum running speed required for the man to catch the train is 4.8 m / s. At that speed he will catch the train 12 seconds after the train started, after he has been running for 6 seconds and covered a distance of 28.8 m . We can show this in two ways:

He runs for 6 seconds: $\quad 4.8 \mathrm{~m} / \mathrm{s} \cdot 6 \mathrm{~s}=28.8 \mathrm{~m}$
The trains travels for 12 seconds: $0.2 \mathrm{~m} / \mathrm{s}^{2} \cdot(12 \mathrm{~s})^{2}=28.8 \mathrm{~m}$.
If the man runs faster than $4.8 \mathrm{~m} / \mathrm{s}$, he will have two opportunities to catch the train.

2. CAS the train 2 (using calculus)

The young man is running at $v=v_{\min }$ and the train has the same speed when he catches it.
Position of train door at time $t: \quad y=\frac{1}{2} a t^{2}=0.20 \cdot t^{2}$.
Speed of train at time $t: \quad v=y^{\prime}(t)=0.40 \cdot t$.
The speed of the young man can be written as: $v=\frac{0.20 \cdot t_{1}^{2}}{t_{1}-6}$, where t_{1} is the time when he catches the train.

Once again we find that he catches the train $t_{1}=12$ seconds after it started.

3. CAS the train 3 (using calculus)

Below we find the equation of the tangent line at the time t_{1} as the Taylor polynomial of order 1. Then solve for t_{1} requiring that $y=0$ when $t=6$:

Once again we find that he catches the train $t_{1}=12$ seconds after it started.

Remark: The model is not fully realistic. You might for instance introduce an acceleration period for the young man before he reaches the constant speed.

