\qquad
\qquad

Open the TI-Nspire document Special_Right_Triangles.tns.

This activity asks you to examine two types of special right triangles and determine the relationships between the lengths of their legs and hypotenuse.

Move to page 1.2.

1. $\triangle A B D$ is an equilateral triangle. Drag point B or D.
a. What kind of triangle is $\triangle A B C$? What are its angle measures? How do you know?
b. What do you observe about $A B$ and $C B$? Write an equation showing the relationship.
c. Given the measures for $A B$ and $C B$, how can the exact value of $A C$ be calculated?
2. Drag point B to get the values of $C B$ given in the table. Record the missing measures of $A B$ and $A C$ (use the Pythagorean Theorem to calculate and record exact values for $A C$). Write the ratio for the

$A B$ (hypotenuse)	$C B$ (shorter leg)	$A C$ (longer leg)	$\frac{A B}{C B}$
	2		
	3		
	4		

3. Examine the table from question 2.
a. What do you observe about $C B$ and $A C$? Test your observation using another length of $\overline{C B}$.
b. Write an equation showing the relationship between $C B$ and $A C$ from your observations.

Special Right Triangles
Name \qquad

Move to page 1.3.

4. Grab point B or D and use \varangle and to move it.
a. What do you observe about the calculation and the measure of $A C$? Does this confirm or disprove your equation in question 3 b ?
b. Describe the special right triangle in this investigation and express relationships that always exist among the shorter leg, longer leg, and hypotenuse.

Move to page 2.1.

5. $\triangle A B C$ is half of a square. Drag point C.
a. What kind of triangle is $\triangle A B C$? What are its angle measures? How do you know?
b. What do you observe about $A B$ and $C B$? Write an equation showing the relationship.
6. Drag point C to get the values of $C B$ given in the table. Record the missing measures of $A B$ and $A C$ (use the Pythagorean Theorem to calculate and record exact values for $A C$). Write the ratio for the fourth column.

$A B$ (leg)	$C B$ (leg)	$A C$ (hypotenuse)	$\frac{A C}{C B}$
	2		
	3		
	4		

7. Examine the table in question 6 .
a. What do you observe about $C B$ and $A C$? Test your observation using another length of $\overline{C B}$.
b. Write an equation showing the relationship between $C B$ and $A C$ from your observations.

Special Right Triangles

\qquad Class \qquad

Move to page 2.2.
8. Drag point C.
a. What do you observe about the calculation and the measure of $A C$? Does this confirm or disprove your equation in question 7 b ?
b. Describe the special right triangle in this investigation and express relationships that always exist among the legs and hypotenuse.

