

Special Right Triangles

Drag the open circles and observe the

Class

measurements.

Open the TI-Nspire document Special_Right_Triangles.tns.

This activity asks you to examine two types of special right triangles and determine the relationships between the lengths of their legs and hypotenuse.

Move to page 1.2.

- 1. $\triangle ABD$ is an equilateral triangle. Drag point *B* or *D*.
 - a. What kind of triangle is $\triangle ABC$? What are its angle measures? How do you know?
 - b. What do you observe about *AB* and *CB*? Write an equation showing the relationship.
 - c. Given the measures for AB and CB, how can the exact value of AC be calculated?
- Drag point *B* to get the values of *CB* given in the table. Record the missing measures of *AB* and *AC* (use the Pythagorean Theorem to calculate and record exact values for *AC*). Write the ratio for the fourth column.

AB (hypotenuse)	CB (shorter leg)	AC (longer leg)	$\frac{AB}{CB}$
	2		
	3		
	4		

- 3. Examine the table from question 2.
 - a. What do you observe about CB and AC? Test your observation using another length of \overline{CB} .
 - b. Write an equation showing the relationship between CB and AC from your observations.

Name _	
Class _	

Move to page 1.3.

- 4. Grab point *B* or *D* and use \triangleleft and \triangleright to move it.
 - a. What do you observe about the calculation and the measure of *AC*? Does this confirm or disprove your equation in question 3b?
 - b. Describe the special right triangle in this investigation and express relationships that always exist among the shorter leg, longer leg, and hypotenuse.

Move to page 2.1.

- 5. $\triangle ABC$ is half of a square. Drag point C.
 - a. What kind of triangle is $\triangle ABC$? What are its angle measures? How do you know?
 - b. What do you observe about *AB* and *CB*? Write an equation showing the relationship.
- Drag point *C* to get the values of *CB* given in the table. Record the missing measures of *AB* and *AC* (use the Pythagorean Theorem to calculate and record exact values for *AC*). Write the ratio for the fourth column.

AB (leg)	CB (leg)	AC (hypotenuse)	$\frac{AC}{CB}$
	2		
	3		
	4		

- 7. Examine the table in question 6.
 - a. What do you observe about CB and AC? Test your observation using another length of \overline{CB} .
 - b. Write an equation showing the relationship between CB and AC from your observations.

Name	
Class	

Move to page 2.2.

- 8. Drag point C.
 - a. What do you observe about the calculation and the measure of *AC*? Does this confirm or disprove your equation in question 7b?
 - b. Describe the special right triangle in this investigation and express relationships that always exist among the legs and hypotenuse.