\qquad
\qquad
In this activity you will be exploring $y=\frac{\sin (x)}{x}$. When the value of a function is $\frac{0}{0}$, the function at that point is said to be indeterminate.

Problem 1 - Graphical Limit

1. Graph the function $f(x)=\frac{\sin (x)}{x}$. Go to the $Y=$ screen and type $\sin (x) / x$ next to $y 1$.
2. Press F2 and select ZoomTrig to view the graph.

- Graphically, approximately what value does $y 1(x)$ appear to equal as x approaches 0 ?

3. Remove the axes by pressing F1 and selecting Format. Arrow down to 'Axes' and arrow right to select OFF. Press ENTER to save.
4. Press F3 (Trace). Examine points in the neighborhood of $x=0$.

- Type 0.1 ENTER. Then type 0.01 ENTER. What does the y-value equal as you move the point from the right toward $x=0$?
- Repeat for $-0.1,-0.01$, etc. What does the y-value equal as you move the point from the left toward $x=0$?
- What happens when you type 0 ENTER? Why?

Problem 2 - Numerical Limit

4. Press F4 to change tbIStart to -0.1 and $\Delta \mathrm{tbl}$ to 0.01 . Press ENTER to save.
5. Press ${ }^{\text {F5 }}$ to view the table. Arrow down to observe what is happening to $y 1$ as x approaches 0 . To see more decimal places for $y 1$ arrow over to the $y 1$ column and continue to arrow down and up.

- Is $y 1$ defined when $x=0$? Explain.
- Does y1 appear to approach the same value from both sides of zero?
\qquad
\qquad

Problem 3 - Algebraic Limit

6. Press HOME. To find the limit from the left hand side, press F3 and choose limit(. Then type $\mathbf{y} \mathbf{1}(\mathbf{x}), \mathbf{x}, \mathbf{0},-\mathbf{1})$ in the entry line and press ENTER.
The -1 at the end the expression causes it to be a left-hand limit. Remove the negative to make it a right-hand limit.

- $\lim _{x \rightarrow 0^{-}} y 1(x)=$
- $\lim _{x \rightarrow 0^{+}} y 1(x)=$

7. When the left-hand limit equals the right-hand limit, the limit exists. Enter $\operatorname{limit}(\mathbf{y} 1(x), x, 0)$ to determine the limit.

- $\lim _{x \rightarrow 0} y 1(x)=$

Practice Problems

Use a graph and a spreadsheet to determine the limit of the following problems.

1. $\lim _{x \rightarrow 1} \frac{x-1}{x^{3}-1}$
2. $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}} 3$
$\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}$
