

Roots of Radical Equations

RootsOfRadicals.tns

Name	
Class	

Problem 1 – Square Roots

Solve the equations below by graphing them on the calculator and finding the intersection with the *x*-axis (if there is one). To find the intersection, select **MENU > Points & Lines > Intersection Point(s)**, then select the function and the *x*-axis. To find the coordinates, press **MENU > Actions > Coordinates and Equations**, and then select the intersection point.

1.	$\sqrt{x}-3=0$	Solution:	2.	$2\sqrt{x+2}-4=0$	Solution:
3.	$-\sqrt{x-2}+5=0$	Solution:	4.	$-3\sqrt{x-4}=0$	Solution:
5.	\sqrt{x} + 1 = 0	Solution:	6.	$\sqrt{x-2}+3=0$	Solution:

Problem 2 – Cubic Roots

Solve the equations below by graphing them and finding the intersection with the *x*-axis (if there is one).

7.	$\sqrt[3]{x}-2=0$	Solution:	8. $3\sqrt[3]{x+3} = 0$	Solution:
9.	$\sqrt[3]{x+1}-4=0$	Solution:	10. $-2\sqrt[3]{x} + 6 = 0$	Solution:
11.	$\sqrt[3]{x} + 2 = 0$	Solution:	12. $2\sqrt[3]{x-4} + 3 = 0$	Solution:

Extension

John wants to place new ATMs exactly 5 miles (in a straight line) from the bank and at the intersection of two streets. In his city, each block is 1 mile long and his bank is located 1 block east and 2 blocks north of the city center.

Drag the ATM point on page 3.2 and use the distance formula to answer the following questions:

13. If he installs a machine 3 blocks north, how far east/west should the ATM be?

14. If he installs a machine 3 blocks south, how far east/west should the ATM be?

15. If he installs a machine 4 blocks east, how far north/south should the ATM be?

16. If he installs a machine 4 blocks west, how far north/south should the ATM be?