
三次函数的探究及其简单应用

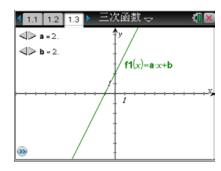
龙御妹

【教学目标】

- 利用导数分析三次函数的图象和性质,进一步提高学生运用导数分析问题的能力;通过对函数图象研究函数的性质,提高学生数形结合、分类整合的能力;
- 通过类比一次函数、二次函数的性质探究三次函数的图象和性质,进一步培养学生合情推理的能力,渗透从特殊到一般,再由一般到特殊的认识过程;
- 通过小组合作提高学生合作能力,通过共同探究,进一步 提高学生探究能力;通过归纳总结提升学生归纳能力.

【教学重点】三次函数图象和性质的探究

【教学难点】对三次函数的系数多个参数的讨论,各参数对函数图象和性质的影响,利用 TI 图形计算器 和小组合作探究讨论形式化解难点.


【教学用具】

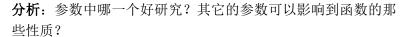
- TI 图形计算器:
- 计算机(几何画板)

【教学过程】

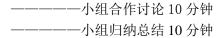
一、回顾联想:

看表格一和图形计算器程序 1.3 页,我们曾经研究过一次函数: $y = ax + b(a \neq 0)$,回顾 a,b 对函数图象和性质的影响;

(点击 ◆调节游标 a, b 值的大小)

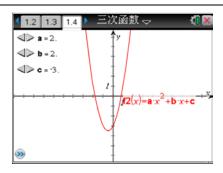


二次函数: $y = ax^2 + bx + c(a \neq 0)$, 回顾 a,b,c 对函数图象和性质的的影响。—————5 分钟

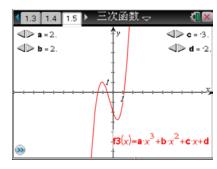

转到 1.4 页,利用图形计算器的演示,带着学生回顾一次 二次函数的图象和性质,从函数的定义域、奇偶性、单调性、 值域、对称性、零点、极值点、纵截距等方面进行归纳,从而 引出三次函数.

二、引入探究:

- 1、三次函数定义: 形如 $y = ax^3 + bx^2 + cx + d(a \neq 0)$ 的函数我们称为三次函数.
- 2、下面研究三次函数的性质和图象,a,b,c,d 对函数图象和性质有何影响呢?

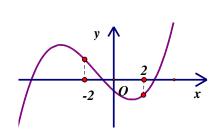


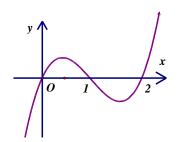
利用表格二和图形计算器程序 1.5 页,小组讨论探究三次函数在定义域、奇偶性、单调性、值域、零点、极值点、对称性方面进行讨论,小组讨论快的组还可以自己开发探究内容。利用 TI 辅助猜想验证,分析三次函数图象的大致趋势有哪些?如何分类?

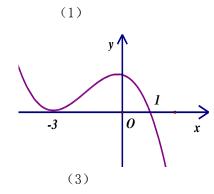


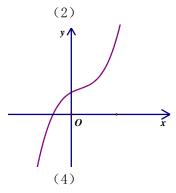
三、归纳总结:

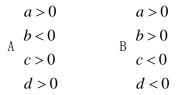
- 1、知识层面:
- (1) 关键点:函数与x,y轴的交点;函数的极值点等
- (2)函数图像的整体走势:定义域、值域、奇偶性、单调性、周期性等性质;无穷远处函数的取值趋势。 用图像作为我们思维的引导,可以帮助我们更好地解决函数相关问题。
- 2、思想方法层面:
- (1) 利用导数作为工具进行函数性质的探究;
- (2) 合理确定分类点,恰当分类整合
- 3、应用:函数探究的内容可以拓展到函数对应的方程的根的个数,进而拓展到直线和抛物线与三次函数图象交点的个数,进一步还可以拓展到不等式解集形式的探究,过一点的直线与三次函数相切的切线条数的探究.

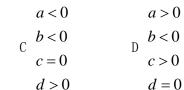

(点击 ▶调节游标 a, b, c 值的大小)




(点击 ▶调节游标 a, b 值的大小)


【练习】


- 1、判断下列三次函数 $y = ax^3 + bx^2 + cx + d(a \neq 0)$ 各图象中的 a,b,c,d 的符号: BDCA
- (1) ____ (2) ___ (3) ___ (4) ___



- 2、若函数 $f(x) = ax^3 + 3x^2 + ax 5$,在 R 上为单调函数,则 a 的取值范围为______. 答案: $[-\sqrt{3},0) \cup (0,\sqrt{3}]$
- 3、讨论方程 $x^3 3x + k = 0$ 的根的个数.

变式: 讨论方程 $x^3 - 3x + k = 0$ 在[-2,2]上的根的个数

变式: $\exists x \in (-3, +\infty)$ 时,方程 $x^3 - 3x + k = 0$ 有唯一解,求 k 的取值范围

若改为 $x \in [0,2]$ 呢?

4、 若函数 f(x)=(x-a)(x-b)(x-c)是 **R** 上的增函数,则函数 f(x)的图象的对称中心为 :: f(x)是 **R** 上的单调函数, $:: f'(x) \ge 0$,对 $x \in \mathbf{R}$ 恒成立,

即 $3x^2-2(a+b+c)x+(ab+bc+ca) \ge 0$ 对 $x \in \mathbf{R}$ 恒成立.

- $\therefore \triangle \leq 0$, $4(a+b+c)^2-12(ab+bc+ca) \leq 0$,
- : $(a-b)^2 + (a-c)^2 + (b-c)^2 \le 0$, : a=b=c.
- \therefore $f(x)=(x-a)^3$, $\therefore f(x)$ 关于点(a, 0)对称.

证明如下: 设点 P(x, y)是 $f(x)=(x-a)^3$ 图像上的任意一点, $y=(x-a)^3$,

点 P 关于点(a, 0)对称的点 P' (2a-x, -y),

 $(2a-x-a)^3=(2a-x)^3=-(x-2a)^3=-y$,

- :点 P'在函数 $f(x)=(x-a)^3$ 的图像上,即函数 $f(x)=(x-a)^3$ 关于点(a, 0)对称.
- 5、已知函数 $f(x) = x^3 x^2 x$,若存在 $x_0 \in (a, a+3)$ 使得 $f(x) \ge f(x_0)$

对一切 $x \in (a, a+3)$ 都成立,求 a 的取值范围。 $(-1 \le a < 1)$

6、函数 $f(x) = x^3 + 3x(x \in R)$, 若 $f(mx^2) + f(1-mx) > 0$ 恒成立, 求实数 m 的取值范围 .

解: 由 $f'(x) = 3x^2 + 3 \ge 3 > 0$, 得 $x \in (-\infty, +\infty)$, f'(x) > 0, f(x) 单调递增;

 $X \in (-\infty, +\infty), -x \in (-\infty, +\infty), f(-x) = (-x)^3 + 3(-x) = -x^3 - 3x = -f(x),$

所以 f(x) 是奇函数. $:: f(mx^2) + f(1-mx) > 0, :: f(mx^2) > -f(1-mx) = f(mx-1)$,

f(x) 在 $(-\infty,+\infty)$ 上单调递增, $mx^2 > mx - 1$ 恒成立,即: $mx^2 - mx + 1 > 0$ 恒成立,分类: ①当 m = 0时,m = 0 恒成立, m = 0 适合;

②当 $m \neq 0$, $mx^2 - mx + 1 > 0$ 恒成立 \Leftrightarrow $\begin{cases} m > 0 \\ \Delta = m^2 - 4m < 0 \end{cases}$ 解得: 0 < m < 4;

综上, $0 \le m < 4$

实验报告二

探究: 三次函数的图象和性质

表格一: 回顾一次函数和二次函数的图象和性质

	一次函数 $y = ax + b(a \neq 0)$		二次函数 $y = ax^2 + bx + c(a \neq 0)$	
函数图象				
定义域				
奇偶性				
值域				
单调性				
极值点				
零点				
纵截距				
对称性				
参数对函数图 象和性质的影 响				

表格二: 探究三次函数 $y = ax^3 + bx^2 + cx + d(a \neq 0)$ 的图象和性质

	T		1
定义域			
奇偶性			
图象			
值域			
单调性			
极值点			
极值点与			
参数关系			
零点			
纵截距			
对称性			
参数对函 数图象和 性质的影 响			

实验报告二

探究: 三次函数的图象和性质

表格一: 回顾一次函数和二次函数的图象和性质

	一次函数 $y = ax + b(a \neq 0)$		二次函数 $y = ax^2 + bx + c(a \neq 0)$	
函数图象				
定义域				
奇偶性				
值域				
单调性				
极值点				
极值点与参数 的关系				
零点				
纵截距				
对称性				
参数对函数图 象和性质的影 响				

表格二: 探究三次函数 $y = ax^3 + bx^2 + cx + d(a \neq 0)$ 的图象和性质

	$a > 0, \Delta > 0$	$a > 0, \Delta \le 0$	$a < 0, \Delta > 0$	$a < 0, \Delta \le 0$
定义 域	R			
奇偶 性	b = d = 0 ⇔ 函数为奇函数			
导函 数 图象	x_1 x_2 x_3	y	X X X X X X X X X X	$\xrightarrow{\bigwedge y}_X$
图象	x_1 x_2 x_3	**	$x \xrightarrow{x_1} x_2$	<i>y</i>
值域	R			
单调 性	增区间为 $(-\infty,x_1),(x_2,+\infty)$;减区间为 $为(x_1,x_2)$	在(-∞,+∞)上 单调递增	增区间为 (x_1, x_2) ; 减区间为 $(-\infty, x_1), (x_2, +\infty)$	在(-∞,+∞)上 单调递减
极值 点	x_1, x_2	无	x_1, x_2	无
极 点 参 的 系	$x_1 + x_2 = -\frac{2b}{3a}, x_1 \cdot x_2 = \frac{c}{3a},$		$x_1 + x_2 = -\frac{2b}{3a}, x_1 \cdot x_2 = \frac{c}{3a},$	
零点	$f(x_1) < 0$ 或 $f(x_2) > 0$ 时,1 个交点; $f(x_1) = 0$ 或 $f(x_2) = 0$ 时 2 个交点; $f(x_2) < 0 < f(x_1)$ 时 3 个交点	1个	$f(x_1) > 0$ 或 $f(x_2) < 0$ 时,1 个交点; $f(x_1) = 0$ 或 $f(x_2) = 0$ 时 2 个交点; $f(x_1) < 0 < f(x_2)$ 时 3 个交点;	1 个
纵截	711	C		

距	
对称 性	关于点 $\left(-\frac{b}{3a}, f(-\frac{b}{3a})\right)$ 对称
参数	
对函	
数图	(1) $a>0$: 函数图象两边增; $a<0$: 函数图象两边减;
象和	(2) $b^2 - 3ac > 0$: 为双峰函数; $b^2 - 3ac \le 0$: 为单调函数;
性质	(2) $b^2 - 3ac > 0$: 为双峰函数; $b^2 - 3ac \le 0$: 为单调函数;
的影	
响	