Student Practice Problems

(Remember that a picture is worth a thousand words.)

1. A rectangle has its base on the x-axis and its two upper corners on the parabola $y=12-x^{2}$. What is the largest possible area of the rectangle?
2. An open rectangle box is to be made from a 9×12 inch piece of tin by cutting squares of side x inches from the corners and folding up the sides. What should x be to maximize the volume of the box?
3. A 384 square meter plot of land is to be enclosed by a fence and divided into two equal parts by another fence parallel to one pair of sides. What dimensions of the outer rectangle will minimize the amount of fence used?
4. What is the radius of a cylindrical soda can with volume of 512 cubic inches that will use the minimum material?
