Examining the Capabilities of TI InterActive![®] and the TI-92 To Teach Programming Concepts:

A Mathematical Review of Transformations

Dr. Daniel R. Miller

damiller@mail.millikin.edu

Mr. J. Dan Foster

jdfoster@mail.millikin.edu

13th Annual International T³ Conference

March 16-18, 2001 Hyatt Regency Hotel and Columbus Convention Center Columbus, OH USA

ff Objectives and Timeline

- Introduction (3 min.)
 - A brief history of transformational geometry
 - Its place in the curriculum
- Quick Demonstration (7 min.)
 - A demonstration of a completed TI-92 program and a similar Interactive page designed to enhance students' understanding of transformations through exploration and programming.
 - Flowchart discussion
- Build TI-Interactive pages that mimic the main capabilities and learning opportunities of programming on the TI-92. (40 min.)

A Quick History: Transformational Geometry in the Curriculum

- 1965
 - Secondary School Mathematics Curriculum Improvement Study (SSMCIS)
 - Suggested the inclusion of Affine, Vector, and Coordinate geometry
- 1967
 - Association for Supervision and Curriculum Development (ASCD)
 - Include motion geometry in the lower grades
- 1988
 - National Council of Supervisors of Mathematics (NCSM), <u>Twelve Components of Essential Mathematics</u>
 - Include transformations; slides, flips, and turns
- 2000
 - National Council of Teachers of Mathematics (NCTM), Principles and Standards
 - Middle-grades students should have had experience with such basic geometric transformations as **translations**, **reflections**, **rotations**, and **dilations**. In high school they will learn to represent these transformations with matrices, exploring the properties of the transformations using both graph paper and dynamic geometry tools. (p. 314)

Principles and Standards for School MATHEMATICS

Fig. 7.17. Representing a reflection using a matrix

Consider a triangle ABC with vertices A = (-5, 1), B = (-4, 7), and C = (-8, 5).

Reflect the triangle over the line y = x to obtain the triangle A'B'C' as shown.

Determine a matrix *M* such that MA = A', MB = B', and MC = C', where the points are represented as vectors.

Explore the properties of the matrix M.

The completed TI-92: program Demo

GRAFFINE()
()
Prgm
"Setmodes
setM ode("Angle","Degree")
setM ode("Pretty Print","On")
setM ode("Exact/Approx","Exact")
setM ode("SplitScreen","Full")
"End setm ode
"Start Info Screens
C h10
D isp "This program will produce information"
D isp "about affine transform ations of"
Disp "the form "
Disp ""
Disp "x ⊨ ax + by + h"
D isp "y = cx + dy + k"
Pause "ENTER to continue."
C 1r10

- Cirmin Ar Alisz Alisz Alisz Alisz - E- Bigebra Cisic Other Prop	nio (Claassiaerou)
[3 0 2]	
0 3 4	
is a similarity.	
Fixed point is	
[-1 -2]	
Scale factor is	
3	
ENTER to continue	
MAIN DEG EXACT FU	INC 25/30 2008

A Similar Interactive Program A quick demonstration.

Affine Transformations Change values by double clicking on them.

 $0 \rightarrow a \ 1 \rightarrow b \ 3 \rightarrow c$

 $1 \rightarrow d \ 0 \rightarrow e \ 4 \rightarrow f$

Input preimage points (x*, y*). $0 \rightarrow x1 \quad 0 \rightarrow y1 \quad 5 \rightarrow x2 \quad 0 \rightarrow y2$ $0 \rightarrow x3 \quad 2 \rightarrow y3$

Transformation equations and new values:

xll:=axl+byl+c3	$x22 := a \cdot x2 + b \cdot y2 + c$	3
yll := d xl + e yl + f 4	$y22 := d \cdot x2 + e \cdot y2 + f$	9
y33 := d x3 + e y3 + f4	33 := a x3 + h y3 + c5	

Our goal:

To produce

this and

similar

pages.

First, lets

see how

this page

works.

simple transformation page - TI InterActive! <u>File Edit View Insert Format Tools Help</u> ABC Ĝ ነ 🗁 🔡 ീ Ж. <u>ы</u> с ¶ ? 🖹 🛓 🗐 🕼 🕼 🖌 Times New Roman • 16 B -U 🚯 🏪 💹 - 🖽 | **R** 1 🜔 🛅

Building a "Simple" Transformation Page

Affine Transformations Change values by double clicking on them.

 $0 \rightarrow a \ 1 \rightarrow b \ 5 \rightarrow c$

 $1 \rightarrow d \ 0 \rightarrow e \ 4 \rightarrow f$

Input a preimage point (x1, y1).

 $-5 \rightarrow x1$

 $4 \rightarrow y1$ Transformation equation:

```
\mathbf{x11} := \mathbf{a} \cdot \mathbf{x1} + \mathbf{b} \cdot \mathbf{y1} + \mathbf{c} \qquad \mathbf{9}
```

I.e. (-5, 4) is mapped to (-9, -1).

 $y_{11} := d \cdot x_1 + e \cdot y_1 + f_{-1}$

(Demo the page)

Lets get started!

- Open **TI InterActive!**®
 - Type
 - Building a "Simple" Transformation Page

- Note: Font, Size, Bold, Italic, Underline, & Center. Press return
- Affine Transformations Change values by double clicking on them. (Font size 16) (Font size 12)

Affine Transformations Change values by double clicking on them

• Simple word processor

Using the Math Box

Upper Left Corner

→ store to variable

Integrated Word Processing

X

۸

-

Х

ENTER

More...

Extensions, Building the Complete Transformation Page

Affine Transformations Change values by double clicking on them.

 $0 \rightarrow a \ 1 \rightarrow b \ 3 \rightarrow c$

 $1 \rightarrow d \ 0 \rightarrow e \ 4 \rightarrow f$

Input preimage points (x*, y*). $0 \rightarrow x1 \quad 0 \rightarrow y1 \quad 5 \rightarrow x2 \quad 0 \rightarrow y2$ $0 \rightarrow x3 \quad 2 \rightarrow y3$

Transformation equations and new values:

xll := a·xl +b·yl +c 3	$x22 := a \cdot x2 + b \cdot y2 + c$	3
yll := d xl +e yl +f 4	$y22 := d \cdot x2 + e \cdot y2 + f$	9
y33 := d·x3 + e·y3 + f4	(33 := a x3 +b y3 +c	5

Transformation: Standard Equations

• Most General Linear Transformation (Projective)

$$x' = \frac{a_1x + b_1y + c_1}{a_3x + b_3y + c_3} - y' = \frac{a_2x + b_2y + c_2}{a_3x + b_3y + c_3} - where \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \neq 0$$

• Affine, specialized to the case $a_3=b_3=0$ and $c_3=1$ $x'=a_1x+b_1y+c_1_y'=a_2x+b_2y+c_2_where \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0$

• Euclidean
- Affine with
$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = \pm 1$$

Affine and Euclidean Standard Forms (Simplified)

• Dilation

$$x' = a_1 x_{-} y' = b_2 y$$
 $x' = k x_{-} y' = k y$

• Translation

Sheer

$$x' = x + c_1 _ y' = y + c_2$$

• Rotation

$$x' = x \cos \alpha - y \sin \alpha - y' = x \sin \alpha + y \cos \alpha$$

• Reflection

 $x' = x\cos 2\alpha + y\sin 2\alpha - y' = x\sin 2\alpha - y\cos 2\alpha$

the line of reflection is $y=\tan\alpha$

- Bibliography
 - Ayres, Frank. (1967). <u>Theory and Problems of Projective</u> <u>Geometry</u>. Schaum Publishing Co. New York.
 - Horadam, A. F. (1970) <u>A Guide to Undergraduate Projective</u> <u>Geometry</u>. Pergamon Press, Australia.
 - Kay, David (1960). <u>College Geometry</u>. Holt, Rinehart and Winston, INC. New York.
 - Allendoerfer, Carl & Oakley, Cletus. (1965) <u>Fundamentals of</u> <u>Freshman Mathematics</u>. McGraw-Hill, Inc. New York.
- Downloads (Request by e-mail)
 - T³ presentation
 - TI-92 program
 - Word document
 - TI-92 program format
 - Flowchart
 - Interactive pages

