Examining the Capabilities of TI InterActive! ${ }^{\circledR}$ and the TI-92 To Teach Programming Concepts:

A TECHNOLOGICAL ODYSSEY
oiv.
13th Annual International
T^{3} Conference

March 16-18, 2001
Hyatt Regency Hotel and
Columbus Convention Center Columbus, OH USA

A Mathematical Review of Transformations

Dr. Daniel R. Miller damiller@mail.millikin.edu

Mr. J. Dan Foster

jdfoster@mail.millikin.edu

IIT Objectives and Timeline

- Introduction (3 min.)
- A brief history of transformational geometry
- Its place in the curriculum
- Quick Demonstration (7 min.)
- A demonstration of a completed TI-92 program and a similar Interactive page designed to enhance students' understanding of transformations through exploration and programming.
- Flowchart discussion
- Build TI-Interactive pages that mimic the main capabilities and learning opportunities of programming on the TI-92. (40 min .)

A Quick History: Transformational Geometry in the Curriculum

- 1965
- Secondary School Mathematics Curriculum Improvement Study (SSMCIS)
- Suggested the inclusion of Affine, Vector, and Coordinate geometry
- 1967
- Association for Supervision and Curriculum Development (ASCD)
- Include motion geometry in the lower grades
- 1988
- National Council of Supervisors of Mathematics (NCSM), Twelve Components of Essential Mathematics
- Include transformations; slides, flips, and turns
- 2000
- National Council of Teachers of Mathematics (NCTM), Principles and Standards
- Middle-grades students should have had experience with such basic geometric transformations as translations, reflections, rotations, and dilations. In high school they will learn to represent these transformations with matrices, exploring the properties of the transformations using both graph paper and dynamic geometry tools. (p. 314)

Fig. 7.17. Representing a reflection using a matrix

Consider a triangle $A B C$ with vertices $A=(-5,1), B=(-4,7)$, and C $=(-8,5)$.
Reflect the triangle over the line $y=x$ to obtain the triangle $A^{\prime} B^{\prime} C^{\prime}$ as shown.

Determine a matrix M such that $M A=A^{\prime}, M B=B^{\prime}$, and $M C=C^{\prime}$, where the points are represented as vectors.
Explore the properties of the matrix M.

The completed TI-92: program Demo

- GRAFFINE ()

0
Prgm
" Setm odes
setM ode ("A ngle","D egree")
setM ode ("P retty P rint","O n")
setM ode ("Exact/A pprox","Exact")
setM ode ("SplitScreen","Full")

* End setm ode
-Start Info Screens
Clrio
D isp "This program w illproduce inform ation"
D isp "aboutaffine transform ations of"
D isp "the form "
D isp ""
D isp " $x=a x+b y+h "$
D isp " $y=c x+d y+k$ "
Pause "EN TER to continue."
C Cr

Equations:

$$
\begin{aligned}
& x^{\prime}=a x+b y+h \\
& y^{\prime}=c x+d y+k \\
& x^{\prime}=0 x+1 y+1 \\
& y^{\prime}=1 x+0 y+1
\end{aligned}
$$

$$
x^{\prime}=a x+b y+h
$$

$$
y^{\prime}=c x+d y+k
$$

Description:

Glide Reflection Axis of reflection
 $\mathrm{y}=\mathrm{x}$
 Glide vector
 [1,1]

Picture:

$$
\begin{aligned}
& x^{\prime}=a x+b y+h \\
& y^{\prime}=c x+d y+k
\end{aligned}
$$

A Similar Interactive Program

A quick demonstration.
Affine Transformations Change values by double clicking on them.
$0 \rightarrow \mathbf{a} 1 \rightarrow$ b $3 \rightarrow c$
$\mathbf{1} \rightarrow \mathbf{d} 0 \rightarrow \mathrm{e} 4 \rightarrow \mathbf{f}$
Input preimage points ($\mathrm{x}^{*}, \mathrm{y}^{*}$).
$0 \rightarrow \mathbf{x} 10 \rightarrow \mathrm{y} 15 \rightarrow \mathrm{x} 2 \quad 0 \rightarrow \mathrm{y} \mathbf{2}$ $0 \rightarrow x \mathbf{x} \quad 2 \rightarrow y 3$
Transformation equations and new values: xll :=a.xl +b.yl +c $3 \quad x 22:=a \cdot x 2+b y 2+c$ 3
$y l l:=1 \cdot x l+e . y l+f$
$4 \quad y 22:=\mathrm{d} x 2+\mathrm{e} y 2+\mathrm{f}$
Wh: $\mathrm{ik}+\mathrm{mH}+\mathrm{f}$

Lets get started!

- Open TI InterActive! ${ }^{\text {® }}$
- Type
- Building a 'Simple" Transformation Page

```
|
```

Building a "Simple" Transformation Page

- Note: Font, Size, Bold, Italic, Underline, \& Center. Press return
- Affine Transformations Change values by double clicking on them. (Font size 16) (Font size 12)
- Simple word processor

Using the Math Box
 \rightarrow store to variable

:= variable assignment

Standard Text 14p

Transformation equation:
$\mathrm{x} 11:=\mathrm{a} \cdot \mathrm{x} 1+\mathrm{b} \cdot \mathrm{y} 1+\mathrm{c}$
$y 11:=d \cdot x 1+e \cdot y 1+f \quad-1$

Use the Math Box for this entire line.

Tl Math Palette				区
Edit Math Statistics Iools Help				
x	${ }^{\text {¢ }}$	Q	100%	
$\frac{a}{b} \sqrt{ }$	y^{x}	$d / d x$	J	Σ
\{ () \}	\vec{x}	\Leftrightarrow	ก.	[: $: 1]$,
α	Ω	\geq	E.	∞
$($)	,	-	\rightarrow
χ_{7}	\mathcal{X}^{-1}	$\sqrt{5}$	χ^{2}	\square
e^{x}	π	EE	i	\wedge
LN	SIN	cos	TAN	\div
ENTRY	7	8	9	\times
ANS	4	5	6	-
STO*	1	2	3	+
:=	0	-	(-)	ENTER
$\begin{aligned} & \text { Input } \\ & \text { Auto Form } \end{aligned}$	nat	Next Lit	\square	More...

\square
Click on 500.0.

Integrated Word Processing

4) is mapped
(11 9, y11 -1).
I.e. $\quad-5,4$) is mapped to
($9,-1$).

Extensions, Building the Complete Transformation Page

Affine Transformations Change values by double clicking on them.
$0 \rightarrow$ a $1 \rightarrow$ b $3 \rightarrow \mathbf{c}$
$1 \rightarrow \mathbf{d} 0$ e $4 \rightarrow \mathbf{f}$
Input preimage points ($\mathrm{x}^{*}, \mathrm{y}^{*}$).
$0 \rightarrow \mathrm{x} 1 \quad 0 \rightarrow \mathrm{y} 15 \rightarrow \mathrm{x} 2$
$0 \rightarrow y^{2}$

$$
0 \rightarrow x 3 \quad 2 \rightarrow y 3
$$

Transformation equations and new values:

xll := axl +byl + c	3	$x 22:=a \cdot x 2+b y 2+c$	
$\mathrm{yll}:=\mathrm{d} \times \mathrm{xl}+\mathrm{e} \cdot \mathrm{yl}+\mathrm{f}$	4	$y 22:=\mathrm{d} \cdot \mathrm{x} 2+\mathrm{e} \cdot y^{2}+\mathrm{f}$	9
			,

Transformation: Standard Equations

- Most General Linear Transformation (Projective)
$x^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{3} x+b_{3} y+c_{3}} _y^{\prime}=\frac{a_{2} x+b_{2} y+c_{2}}{a_{3} x+b_{3} y+c_{3}}$ _where $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right| \neq 0$
- Affine, specialized to the case $a_{3}=b_{3}=0$ and $c_{3}=1$
$x^{\prime}=a_{1} x+b_{1} y+c_{1}-y^{\prime}=a_{2} x+b_{2} y+c_{2} _$where $\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right| \neq 0$
- Euclidean
- Affine with $\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|= \pm 1$

Affine and Euclidean Standard Forms (Simplified)

- Sheer

$$
x^{\prime}=a_{1} x_{-} y^{\prime}=b_{2} y
$$

- Dilation

$$
x^{\prime}=k x-y^{\prime}=k y
$$

- Translation

$$
x^{\prime}=x+c_{1} \ldots y^{\prime}=y+c_{2}
$$

- Rotation

$$
x^{\prime}=x \cos \alpha-y \sin \alpha y^{\prime}=x \sin \alpha+y \cos \alpha
$$

- Reflection

$$
x^{\prime}=x \cos 2 \alpha+y \sin 2 \alpha-y^{\prime}=x \sin 2 \alpha-y \cos 2 \alpha
$$

the line of reflection is $y=\tan \alpha$

- Bibliography
- Ayres, Frank. (1967). Theory and Problems of Projective Geometry. Schaum Publishing Co. New York.
- Horadam, A. F. (1970) A Guide to Undergraduate Projective Geometry. Pergamon Press, Australia.
- Kay, David (1960). College Geometry. Holt, Rinehart and Winston, INC. New York.
- Allendoerfer, Carl \& Oakley, Cletus. (1965) Fundamentals of Freshman Mathematics. McGraw-Hill, Inc. New York.
- Downloads (Request by e-mail)
- T^{3} presentation
- TI-92 program
- Word document
- TI-92 program format
- Flowchart
- Interactive pages

