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graph mode, define y1 = .1^x and y2 = 10^x. Set up the TI-89’s 
 to start at 1 and go up by 1. The 
table will look like so: 

 
Fig. 1  

 
 
 
To set up the 
, press 	 (�e). 
Then press � $ � � �, which 
stores 1 to both tblStart  and ∆tbl . 
 
To view the 
, press �f. 

You see y1 rapidly “shrinking” (toward 0) while y2 is just as rapidly “growing” (toward ∞). In calculus 
symbols: 

0
10

1
lim =







∞→

n

n
 and ( ) ∞=

∞→

n

n
10lim . 

 
 

Exercise 1: Find 














+

∞→

n

n 10

1
2lim  and 















−

∞→

n

n 10

1
2lim  

In both limits, the fractional term approaches 0 while the first term is 2. Applying the “Limit of a sum is the 
sum of the limits” theorem, the limit is therefore 2 for both sequences, but the first approaches 2 “from 
above” while the second approaches 2 “from below.” Here’s a numerical look, where y1 = 2+(.1)^x and  
y2 = 2– (.1)^x: 

Fig. 2  Fig. 2b  

In both this exercise and the initial example it is important to notice that the independent variable is 
nowhere near ∞. In both tables, the independent variable has only reached 5. Yet, already the sequence 
behavior is clear, so rapid is the approach behavior. Figure 2b gives a graphical look. Do the phrases “from 
above” and “from below” make more sense now? 
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Algebraically, the “–” sign amounts to multiplying by –1, a constant, which can be “factored” out of the 
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This is not a sequence, but the same idea applies. The problem asks, what does 
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gets closer and closer to 2, both through larger values (2.1,2.01,2.001,…) and smaller (1.9,1.99,1.999…),? 
A numeric approach could be to TRACE  the function’s graph, and ZOOM in on points with x-coordinate 
near 2, though usually such coordinates are ugly (see figure 3b). Setting the TI-89 table to start at 2 and go 
up by a small amount (.1 or .01 or .001, etc.) and then moving the cursor up in the table past 2 to get a table 
such as the one below can be better, especially if combined with the graph: 

Fig 3  Fig 3b  
With ∆tbl = .0001, we see fairly strong evidence that the limit is 0.25, although the function is undefined at 
2. 
 
[Both pieces of information are important, however—the behavior of f near 2 appears to be that points 
“cluster” about the point (2 , 0.25), but there is a “hole” in the graph at (2 , 0.25), where f is undefined. 
(Confirm this by tracing to x = 2.) In all limit problems, we seek to describe the behavior of the function 
near, not necessarily at, a certain value. It is algebra, not calculus, that tells us that f(2) is undefined. 
However, calculus tell us that f is discontinuous at x = 2 because of all of this.] 
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, accurate to 5 decimal places. 

We’ll just look at a table, since the graph looks virtually the same as the one for Exercise 3 [the π’s just 
replace three 2’s]. But trying the same approach as in Exercise 3 leaves us wondering. With tblStart = π 
and ∆tbl  = .0001, we see the following table, after moving 2 rows up past π: 

Fig. 4  
Not only is it difficult to see roughly where π is, it isn’t even clear to three decimal places what the limit 
might be—what, exactly, is going on in that middle row?? We could make ∆tbl  smaller and smaller and 
play with the cursor keys for a while, but we need a better-organized, smoother approach than that. We 
need a way to make x approach π, both from the right (values larger than π) and left (values smaller than 
π). So, there is a “sub-exercise” to work on before we can efficiently finish this exercise. 
 

Exercise 4b: Find a sequence that approaches π through larger values. Then find one that 
approaches π through smaller values. 
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But how do we make x-coordinates on a graph approach π that way? 
 
The answer lies in PARAMETRIC  Graph �. We will aim for the most general solution, 
using a instead of π and f instead of the given function. 
 
First, on the � screen, press g (which is �b) and then press � to clear all one-letter 
variables from your ’89’s memory. Then make the � screen look like so: 

Fig. 5  
Here, xt1 defines a sequence that will approach a through smaller values, while xt2 defines one 
approaching a through larger values. Meanwhile, yt1 is a function of the xt1 sequence values, 
while yt2 is a function of xt2. All that remains is to define a to equal π and f to equal the given 
function, which we can easily do on the � screen. 

 
…meanwhile, back at Exercise 4… 
 
Store π into a and define f to be our function: 

Fig. 6  
 

To make x approach a, set up the table to produce x’s in a way similar to how we got the x values in 
Exercise 1—make tblStart = 1 and ∆tbl  = 1— always. For the function in Exercise 4, the table looks like 
this: 



Fig.7   Fig. 7b  
While x (that is, xt1) is fairly close to π, the function, f, appears to be approaching .1592, but we were 
asked for five-decimal-place accuracy, and we just don’t see that yet. Not to worry—just use the cursor 
keys to move a few rows down through the table, closer and closer to π: 

Fig. 8  Fig. 8b  
On the 9th row of the table, x is “very” close to π, and since the last entry on the screen—the one closest to 
π so far—starts with .15915457, it seems safe to go with .15915 as the estimate to 5 decimal places. 
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On the � screen, define a and f: 

Fig. 9  Fig. 9b  

 
Looking at the table, even far down in the table, you will see no pattern—but by all means look. You will 
see rather indescribable, if not unpredictable, behavior. Since f doesn’t appear to approach any particular 
number, we conclude that no limit exists. Such behavior may best be illustrated graphically via repeated 
ZOOM In  at (0,0). No matter how many times you zoom in (in theory), the graph always looks more or 
less like that in figure 9b. Viewed graphically, we realize that the function’s behavior can be described: it is 
“oscillating wildly” between –1 and 1 as x approaches 0. 
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particular pattern, say that it probably does not exist and give reasons. 
 



 
Exercise 7: Describe the “end behavior” of the inverse tangent function by estimating the numeric values 
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Hmm…∞…what to make a equal…∞? (Your ’89 will let you!) But, no, because, referring to the � screen 

in Exercise 4b, that would mean that values of the form t)1(.±∞ would need to be computed and that’s 

just not going to work well. (Have your ’89 compute ∞ – 1, for example. Does the result surprise you?) 
 
So what WILL work? Well, to make x approach ∞ quickly enough for the TI-89 table to help, we need x to 
take on values such as those values of y2 in figure 1. And to make x approach –∞, we’d need the opposites 
of those y2 values. 
 
So, define parametric functions 3 and 4 like so (and do not clear the first 2 parametric functions—just use 
e to temporarily “turn them off”): 

Fig. 10  Fig. 11  
Do you see that xt3 will quickly approach ∞, while xt4 will rush toward –∞? Now we can investigate the 
end behavior of f via yt3 and yt4, each of which is f of x-coordinates generated by xt3 or xt4. 
 
The only thing left to do on the � screen is to Define f(x)=tan-1(x), look at the table, and make a good 
guess based on the evidence.  
 
The graph of this f is shown above in figure 10b, along with 2 horizontal lines—its asymptotes. Can you 
guess the exact equations of the asymptotes?  
 

(Trial-and-error produced the S used, in which x goes from –10 to 10, y from –2 to 2, and t from –1 
to 1 in steps of .1. Is it clear from the definitions of xt3 and xt4 why t has such a small range and why it has 
to include negative values?) 
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0
. Draw its graph to show the function’s end 

behavior and its behavior near 0. (Note that the function is odd [Why?], which may save you some effort.) 
 
 
In this activity, words and phrases such as “seems safe,” “appears,” “fairly strong, ” and “very close,” 
permeate. It would be wrong to think that the work above is anything more than just wishful thinking. 
Whether obtained from graphs, one point at a time, or from tables, 5 at a time, the numeric evidence is very 



strong, but it proves nothing. There are algebraic techniques, some easier than others, that can be applied to 
prove that each limit is exactly what it is. In fact, you should factor the denominator in Exercise 4, do a 

little algebra, and prove that the limit is exactly 
π2

1
, which is approximately 0.159154, as we guessed. 

 
Moreover, the TI-89 can do almost all of the required algebra via intrinsic routines and the � screen d 

(Calculus) ¤ (Limit ) command. But understanding limits numerically is as essential as understanding 
them graphically or algebraically (symbolically). The three approaches help to form a seamless whole. 
 
(You might want to save the 4 parametric functions used to help estimate the limits in this activity so you 
never have to type them again. To do so, on the � screen press b � (Save copy as GDB—Graph 
DataBase) $ and type a name that will remind you of the activity and the fact that the name represents a 
Graph Database, such as gdlimits. Later, just opening the Graph Database will give you all 4 functions and 
set the mode to parametric. To do so, on the � screen press b � $ and type the name you used earlier.) 
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