Limits, Numerically

by Dave Slomer
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The sequence8,, = E]_TO and bn = (10)n are bothgeometri¢ butbehave very differently. In normal
0

graph mode, defingl = .1"xandy2 = 10"x Set up the TI-89'§ABLF] to start at 1 and go up by 1. The
_table will look I|ke S0:

®
é' To set up therABLE], presgTbiSet] (¢](F4)).
3: - Then pres§l] © [ENTER], which
4, MTEog] EIEIEIEI stores 1 to botlbiStart andAtbl.
F LooE0l (100000,
= To view the[TABLE], presge][F5).
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You seeyl rapidly “shrinking” (toward 0) whilg/2 is just as rapidly “growing” (toware). In calculus
symbols:
lim B—H 0 and lim (10)" =
naw N - oo

N - oo n-oo

Exercise 1Find Iim% B—H Eand Ilm% B—H E

In both limits, the fractional term approaches 0 while the first tei2n Agplying the “Limit of a sum is the
sum of the limits” theorem, the limit is therefore 2 for both sequences, but the first approaches 2 “from
above” while the second approaches 2 “from below.” Here’s a numerical look, yther2+(.1)"xand

y2 = 2— (1)
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In both this exercise and the initial example it is important to notice that the independent variable is
nowhere neaw. In both tables, the independent variable has only reached 5. Yet, already the sequence
behavior is clear, so rapid is the approach behavior. Figure 2b gives a graphical look. Do the phrases “from
above” and “from below” make more sense now?

Exercise 2Find lim (— (10)”).

n- o

Algebraically, the “~” sigh amounts to multiplying by —1, a constant, which can be “factored” out of the
limit expression, giving— lim ((10)”). Hence, the limit is oo,
Nn—- o
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Exercise 3EEstimate the numeric value &im BTB
X=2[X =4[

X—2
This is not a sequence, but the same idea applies. The problem asks, W)Bt—gleez Ebpproach ax
[IX® =4[

gets closer and closer to 2, both through larger values (2.1,2.01,2.001,...) and smaller (1.9,1.99,1.999...),?
A numericapproach could be fBRACE the function’s graph, andOOM in on points withx-coordinate

near 2, though usually such coordinates are ugly (see figure 3b). Setting the TI-89 table to start at 2 and go
up by a small amount (.1 or .01 or .001, etc.) and then moving the cursor up in the table past 2 to get a table
such as the one below can be better, especially if combined with the graph:
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With Atbl = .0001, we see fairly strong evidence that the limit is 0.25, although the function is undefined at
2.

[Both pieces of information are important, however—hkeaviorof f near 2 appeats be that points
“cluster” about the point (2 , 0.25), but there is a “hole” in the gead , 0.25), wheréis undefined
(Confirm this by tracing ta = 2.) In_alllimit problems, we seek to describe ti@haviorof the function
near not necessarily aa certain value. It is algebra, not calculus, that tells ug(#)as undefined.
However, calculus tell us thats discontinuousatx = 2 because of all of this.]
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Exercise 4Find an approximate numeric value fiim BﬁE{ accurate to 5 decimal places.
X=mX" =" [
We'll just look at a table, since the graph looks virtually the same as the one for Exercisg' Sj[tbe
replace three 2's]. But trying the same approach as in Exercise 3 leaves us wonderitig Stéith= 1t
andAtbl =.0001, we see the following table, after moving 2 rows uprpast

£E TR
A
15916
5. 141493, 1591575
3. 141593). 1538462
3. 1416931591524
3. 141793].1591499
#=3. 14139265359
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Not only is it difficult to see roughly whermeis, it isn’t even clear to thredecimal places what the limit

might be—what, exactly, is going on in that middle row?? We could dsdkesmaller and smaller and

play with the cursor keys for a while, but we need a better-organized, smoother approach than that. We
need a way to makeapproachrt, both from the right (values larger thEpand left (values smaller than

). So, there is a “sub-exercise” to work on before we can efficiently finish this exercise.

Exercise 4bFind a sequence that approactiesrough larger values. Then find one that
approaches through smaller values.
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limL2 - pproached 2 through smaller values.
00

n-oo

: 1 H
In Exercise 1, we learned thim % + @].TO %pproached 2 through larger values and that
U

e L1
So, for the same reasorl&#n 47 + =10 pproachest from above and
l

n- oo

lim —BLH pproaches from below.
n-o 00

But how do we makg-coordinates on a graph approacthat way?

The answer lies iIPARAMETRIC Graph [MODE]. We will aim for the most general solution,
usinga instead ofitandf instead of the given function.

First, on thdHOME] screen, pregss] (which is[2nd][F1]) and then preds] to clear all one-letter
variables from your '89’s memory. Then make [if+¢ screen look like so:
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Here,xtl defines a sequence that will approadhrough smaller values, whil¢2 defines one
approaching through larger values. Meanwhilg] is a function of thetl sequence values,
while yt2 is a function okt2. All that remains is to defin@to equaltandf to equal the given
function, which we can easily do on screen.

...meanwhile, back at Exercise 4...

Storettinto a and defind to be our function:
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To makex approacths, set up the table to produgs in a way similar to how we got thevalues in

Exercise 1—mak#blStart = 1 andAtbl = 1— always For the function in Exercise 4, the table looks like
this:
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1. 1617259 1.

2. « 15940565 2.

3. 1591203 3.
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While x (that is,xt1) is fairly close tar, the functionf, appears to be approaching .1592, but we were
asked for fivedecimal-place accuracy, and we just don't see that yet. Not to worry—just use the cursor
keys to move a few rows down through the table, closer and cloger to
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gfiitr=. 1591045709198 utZit o=, 15915457091928
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On the §' row of the tablex is “very” close tor, and since the last entry on the screen—the one closest to
1 so far—starts with .15915457, it seems safe to go with .15915 as the estimate to 5 decimal places.

Exercise 5Give numerical evidence thim inB; %joesn’t appear to exist.
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On the[HOME] screen, defina andf:

Fir| Fe= |Fa=| Fur ] FE Fh~ Fie| Fer| F3 Fu FE= | FG= [Fre75

Too1s|A13cbra|Calc|Other |FFAmIO|CT1ean Ur Tools|2aem|Tracs|Re3rarh|tath|DF QW Fen|:-:
1
B s 0] |
, , 1
B Oefine flx) =51n[; Date
Detfine fixi==indl.- =D oo OFEUS3608 | gyoi . 99954931
Fig. ol FIAIN FAD AUTO FAR 2788 | rig. op|FAIN RAD ALT FUNC

Looking at the table, even far down in the table, you will see no pattern—but by all lmaarsou will

see rather indescribable, if not unpredictable, behavior. Suhoesn’'t appear to approach any particular
number, we conclude that no limit exists. Such behavior may best be illustrated graphically via repeated
ZOOM In at (0,0). No matter how many times you zoom in (in theory), the graph always looks more or

less like that in figure 9b. Viewed graphically, we realize that the function’s behavibeadscribed: it is
“oscillating wildly” between —1 and 1 asapproaches O.

Exercise 61f lim %( E‘BinB; ppears to exist, estimate its value. If, as in Exercise 5, you see no
[X

x-0

particular pattern, say that it probably does not exist and give reasons.




Exercise 7.Describe the “end behavior” of tireverse tangentunction by estimating the numeric values
of Iim(tan‘l x) and lim (tan‘l x).
X — 00 X — —00

Hmm...c...what to make equal..? (Your '89 will let you!) But, no, because, referring to fhé screen
in Exercise 4b, that would mean that values of the fornh (.1)t would need to be computed and that’s
just not going to work well. (Have your '89 compute- 1, for example. Does the result surprise you?)

So what WILL work? Well, to make approachw quickly enough for the TI-89 table to help, we nged

take on values such as those valuggdh figure 1. And to mak& approach e, we’'d need the opposites
of thosey?2 values.

So, define parametric functions 3 and 4 like so (and daclaat the first 2 parametric functions—just use
to temporarily “turn them off”):
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Do you see thatt3 will quickly approach, while xt4 will rush toward <? Now we can investigate the
end behavior of viayt3 andyt4, each of which i$ of x-coordinates generated kB or xt4.

The only thing left to do on tHBOME] screen is tdefine f(x)=tan(x), look at the table, and make a good
guess based on the evidence.

The graph of thi§ is shown above in figure 10b, along with 2 horizontal lines-astignptotesCan you
guess the exact equations of the asymptotes?

(Trial-and-error produced tH&INDOW] used, in which goes from —10 to 1§, from -2 to 2, and from —1
to 1 in steps of .1. Is it clear from the definitionsxt¥ andxt4 whyt has such a small range and why it has
to include negative values?)

. 1 H
Example 8Estimate lim %+— %With accuracy to 6 decimal places. Can you guess the exact value
nj

N - oo

of this limit?

Example 9Estimate lim EF—EIa dlim ELEI Draw its graph to show the function’s end

X-zxo[] X [ x-0] X
behavior and its behavior near 0. (Note that the functlodds{Why’?], which may save you some effort.)

In this activity, words and phrases such as “seems safe,” “appears,” “fairly strong, ” and “very close,”
permeate. It would be wrong to think that the work above is anything more than just wishful thinking.
Whether obtained from graphs, one point at a time, or from tables, 5 at a time, the numeric evidence is very



strong but it proves nothingrhere are algebraic techniques, some easier than others, that can be applied to
provethat eacHimit is exactlywhat it is. In fact, you should factor the denominator in Exercise 4, do a

1
little algebra, angrovethat the limit isexactlyz—, which is approximately 0.159154, as we guessed.
7T

Moreover, the TI-89 can do almost all of the required algebra via intrinsic routines lEhscreerF3)

(Calculus) (3] (Limit ) command. But understanding limits numerically is as essential as understanding
them graphically or algebraically (symbolically). The three approaches help to form a seamless whole.

(You might want to save the 4 parametric functions used to help estimate the limits in this activity so you
never have to type them again. To do so, offivtiescreen predsi] (2] (Save copy as GDB-Graph
DataBase)® and type a name that will remind you of the activity and the fact that the name represents a
Graph Database, suchgdlimits. Later, just opening the Graph Database will give you all 4 functions and
set the mode to parametric. To do so, orftHescreen predsi] (1] @ and type the name you used earlier.)
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