Mathematical Methods(CAS) probability distributions using DERIVE

DERIVE contains built in functions for computing binomial, hypergeometric, standard normal and normal probabilities directly. Inverse normal computations can also be readily carried out by numerical equation solving. The following describes these functions and provides an example of each type of calculation.

Binomial distribution

If the random variable X is binomially distributed, with probability of success p and n trials, then the probability of x successes is given by:
BINOMIAL_DENSITY(X, n, p). For example, if the probability of success is 0.4 and there are 20 trials then the probability of 8 successes is given by:

```
#1: BINOMIAL_DENSITY(8, 20, 0.4)
```

```
#2:
0.1797057877
```

Hypergeometric distribution

If the random variable X is hypergeometrically distributed, with D defectives in a population of size N, then the probability of x defectives in a sample of size n is given by:HYPERGEOMETRIC_DENSITY(x, n, $D, N)$. For example, if $N=100$ and there are 30 defectives, then the probability of 6 defectives in a sample of size 10 is given by:
\#3: HYPERGEOMETRIC_DENSITY(6, 10, 30, 100)
\#4: 0.03145116093

The standard normal distribution

If X is a normally distributed random variable with mean $\mu=0$ and standard deviation $\sigma=1$, then the probability that X is less than (or less than or equal tola is given by NORMAL(a).For example, the probability that $X<1$ is given by:

\#5: NORMAL(1)

\#6:
0.841344746

The normal distribution with mean μ and standard

```
deviation \sigma
If X is a normally distributed random variable with mean }\mu\mathrm{ and
standard deviation }\sigma\mathrm{ , then the probability that X is less than a is
given by NORMAL(x, \mu,\sigma).For example, if }\mu=30\mathrm{ and }\sigma=7\mathrm{ (the VCE study
score distribution with a range of 0 to 50) then the probability that
X < 27 is given by:
```

\#7: $\operatorname{NORMAL}(27,30,7)$
\#8:
0.3341175708
Thus, about 33% of the student cohort will have a study score of less
than 27.
Note that $\operatorname{Pr}(X>a)$ is computed by $1-\operatorname{Pr}(X<a)$ and
$\operatorname{Pr}(a<X<b)$ is computed by $\operatorname{Pr}(X<b)-\operatorname{Pr}(X<a)$.
Inverse normal calculations
Inverse normal calculations are carried out by evaluation of NSOLVE
(NORMAL $(a, \mu, \sigma)=k, a)$ where a is sought such that $\operatorname{Pr}(X<a)=k$. For
example, if X is a normally distributed random variable with mean 30
and standard deviation 7 , then the value of a such that $\operatorname{Pr}(X<a)=$
0.95 is given by:
\#9: $\operatorname{NSOLVE}(\operatorname{NORMAL}(\mathrm{a}, 30,7)=0.95, \mathrm{a})$
\#10:
$\mathrm{a}=41.51397526$

Thus the study score (correct to the nearest integer)required to be in the top 5% of the cohort would be 42 or above.
© 2004 Draft sample Derive materials by David Leigh-Lancaster \& Dr. Pam Norton. These materials may be used by schools on a not for profit basis. Care has been taken in produding these materials but they have not been checked. No responsibility is accepted by the authors for any errors they may contain.

