

Name:

Part I (for a worked example go to slide 9 in PowerPoint)

Use your TI-15 Explorer[™] calculator to find the smallest possible and the largest possible perimeter for the following rectangles: (use only integers)

- 1. Rectangle with an area of 16 cm²
 - i) Smallest perimeter
 - ii) Largest perimeter
- 2. Rectangle with an area of 18 cm²
 - i) Smallest perimeter
 - ii) Largest perimeter _____
- 3. Rectangle with an area of 20 cm^2
 - i) Smallest perimeter _____
 - ii) Largest perimeter _____
- 4. Rectangle with an area of 28 cm^2
 - i) Smallest perimeter _____
 - ii) Largest perimeter
- 5. Rectangle with an area of 36 cm²
 - i) Smallest perimeter _____
 - ii) Largest perimeter
- 6. What do you notice about the shapes of the rectangles with the smallest perimeters?

Part z (For a worked example go to slide 10 in PowerPoint)

Use your TI-15 Explorer[™] calculator to find the smallest possible and the largest possible area for the following rectangles: (use only integers)

1. Rectangle with a perimeter of 16 cm

6. What do you notice about the shapes of the rectangles with the largest areas?