Parallel \& Perpendicular Lines

Teacher Notes Answers

$\begin{array}{llll}7 & 8 & 9 & 10\end{array}$

Introduction

Parallel and perpendicular lines in geometry are everywhere, but how can you make two equations parallel or perpendicular?

Scan the QR code or use the link to watch a video to explore parallel and perpendicular lines.

Question: 1.
Determine the equation to the straight line that is parallel to $y=2 x-1$ passing through the point $(4,1)$.
Answer: $y=2(x-4)+1$ which simplifies to: $y=2 x-7$

Question: 2.

Determine the equation to the straight line that is parallel to $y=-x+2$ passing through the point $(1,3)$.
Answer: $y=-(x-1)+3$ which simplifies to: $y=-x+4$ or $y=4-x$

Question: 3.

A trapezium $A B C D$ has vertices: $A(-3,2) ; B(4,5) ; C(8,3)$ and $D(-6,-3)$. Identify the pairs of parallel sides.
Answer: AB is parallel to $\mathrm{CD}: M_{A B}=\frac{5-2}{4-{ }^{-} 3}=\frac{3}{7}$ and $M_{B C}=\frac{3-{ }^{-} 3}{8-{ }^{-} 6}=\frac{6}{14}=\frac{3}{7}$

Question: 4.

A parallelogram has vertices: $A(1,4) ; B(5,9) ; C(14,6)$ and $D\left(d_{x}, d y\right)$. Determine the coordinates of point D.
Answer: $M_{A B}=\frac{9-4}{5-1}=\frac{5}{4}$ and $M_{B C}=\frac{9-6}{5-14}=-\frac{1}{3}$
Students could determine the equations for $A D$ and $C D$ and solve their point of intersection using simultaneous equations.
See solution shown opposite:
Alternatively, students can set up linear equations for the gradient expressions with d_{x}, d_{y}
$M_{C D}=\frac{6-d_{y}}{14-d_{x}}=\frac{5}{4}$ and $M_{C D}=\frac{4-d_{y}}{1-d_{x}}=-\frac{1}{3}$
Solution: $d_{x}=10$ and $d_{y}=1$

Question: 5.

Determine the equation to the straight line that is perpendicular to $y=2 x-1$ passing through the point $(4,1)$
Answer: $y=-\frac{1}{2}(x-4)+1$ which simplifies to: $y=-\frac{1}{2} x+3$

Question: 6.
Points A, B \& C have coordinates: $(2,5),(13,3)$ and $(p, 9)$ respectively. Line $A C$ is perpendicular to $B C$.
a) Determine the value(s) for p.

Answer: $\quad M_{A C} \times M_{A B}=-1 \quad \therefore p=5$ or 10

$$
\begin{aligned}
\frac{9-5}{p-2} \times \frac{9-3}{p-13} & =-1 \\
-24 & =p^{2}-15 p+26 \\
0 & =(p-10)(p-5)
\end{aligned}
$$

b) Find the coordinates of the midpoint of A and B. Label this as point D.

Answer: Midpoint: $\left(\frac{2+13}{2}, \frac{5+3}{2}\right)=\left(\frac{15}{2}, 4\right)$
c) Show that distances: AD, BD and CD are all equal.

$$
\begin{aligned}
& \text { Answer: } d_{A D}=\sqrt{(2-7.5)^{2}+(5-4)^{2}}=\frac{5 \sqrt{5}}{2} \approx 5.59 \\
& d_{B D}=\sqrt{(13-7.5)^{2}+(3-4)^{2}}=\frac{5 \sqrt{5}}{2} \approx 5.59 \\
& d_{C D}=\sqrt{(10-7.5)^{2}+(9-4)^{2}}=\frac{5 \sqrt{5}}{2} \approx 5.59 \quad \mathrm{AND} \\
& d_{C D}=\sqrt{(5-7.5)^{2}+(9-4)^{2}}=\frac{5 \sqrt{5}}{2} \approx 5.59
\end{aligned}
$$

Question: 7.

Points $A(1,1), B(14,3), C(10,10)$ and $D(2,9)$ form a quadrilateral.
a) Let P, Q, R and S be the midpoints of $A B, B C, C D$ and $D A$ respectively, determine the coordinates of point P, Q, R and S.

Answer: $P(7.5,2) ; Q(12,6.5) ; R(6,9.5)$ and $S(1.5,5)$
b) PQRS forms a quadrilateral, show that this quadrilateral is a parallelogram.

$$
\text { Answers: } \begin{array}{rlrl}
& M_{P Q} & =\frac{6.5-2}{12-7.5}=1 ; & M_{Q R}=\frac{9.5-6.5}{6-12}=-\frac{1}{2} ; \\
& M_{R S}=\frac{9.5-5}{6-1.5}=1 ; & M_{S P}=\frac{2-5}{7.5-1.5}=-\frac{1}{2} .
\end{array}
$$

As $M_{P Q}=M_{R S}$ and $M_{Q R}=M_{S P}$ the quadriateral is a parallelogram.
c) Create your own set of points A, B, C and D such that they form a quadrilateral. Determine the coordinates for P, Q, R and S for your quadrilateral. Show that $P Q R S$ is also a parallelogram.
Answer: Answers will vary, forming a quadrilateral from the midpoints of a quadrilateral will always generate a parallelogram. This can be proved easily using coordinate geometry.

Teacher Notes:

Students should be encouraged to use their calculator to check answers to selected questions and see which approach is more efficient.

Example: Question 1:

Students can graph the line $y=2 x-1$, however you cannot use the Geometry tools to construct a parallel line, to an equation.

However, students can use the Point On tool to place two points on the graph.

Use the segment tool to draw a line connecting the two points.
Use the Point (Coordinates) and plot a point at (4, 1)
Now students can use the Geometry tools to construct a parallel line (to the graph of $y=2 x-1$, courtesy of the function) passing through the point $(4,1)$.

The equation can be display to get the result: $y=2 x-7$.
Students should note that whilst they can get an answer by relying completely on the calculator, in this situation it is much slower, and not necessary.

Example: Question 6:

This question ties in nicely with the Circumcentre activity. The points A and B can be generated using the keyboard shortcut P.

A line corresponding to $y=9$ is included as point C contains the ordinate 9. Measure the angle on the two segments can provide a good approximation for the solution(s).

However, once the midpoint is included we see the familiar circle geometry that also ties in with the circumcentre of a triangle where the centre of the circle is on one of the sides of the triangle!

