Open the TI-Nspire document Tangent_Line_Demo.tns.

Objective: To make a connection between the slope of the tangent line at a point and the function that represents the slope at all tangent points to a function.

Directions: Follow the steps below to complete the activity.

Move to page 2.1.

On page 2.1 of the TI-Nspire document, you will see this graph. On this graph, the function graphed is $\mathbf{f 1}(x)=x^{2}$. The tangent line and slope of the tangent are shown. Point P represents the coordinates (x value, slope of tangent line) and is labeled along with the coordinates.
Grab and move the empty circle on the x-axis and watch the tangent line and point P move.

1. Can you predict what function point P is tracing?

Move to page 2.3.

You will see a scatter plot of the points that P traced on the page.
For this example, the graph should look like this.
Enter your prediction function in the entry line for $\mathbf{f 3}(x)$ and see if your prediction matches the scatter plot. You can change the function you enter as many times as needed until you get a match. The function that matches the scatter plot is called the derivative function.
2. What is the derivative function of $f(x)=x^{2}$?
$\sqrt[4]{1.1} 2.1$ 2.2, Tangent_Li..emo \geqslant 细国
Tangent Line \& Slope
This demonstration shows a point, P , that represents the relationship between x and the slope of the curve. Data for the values of point P are collected into a spreadsheet and a scatter plot displays the relationship.

Press (ctr) and (ctr) \langle to navigate through the lesson.

To explore other functions, use these steps to change the function and clear the collected data.

Step 1: Go to page 2.1 and change the function by clicking on double arrow in the lower left corner. Click in the entry line and press the up arrow to see $\mathbf{f}(x)$ and edit the equation.
Step 2: Go to page 2.2 and highlight the formula cells in columns A and B with the word capture and then press enter twice.
Step 3: Return to page 2.1 and begin the lesson steps again.

Exploration 1: Now that you have found the derivative function for $f(x)=x^{2}$, explore some other variations of this function and see if you can find a pattern in their derivatives.

Record the derivative functions and any patterns you saw.
3. $f(x)=a x^{2}$, where a equals $2,3,4$, etc., until you see a pattern.
4. $f(x)=(x-a)^{2}$, where a equals $2,3,4$, etc., until you see a pattern.
5. $f(x)=a x^{2}+b$; keep a constant and change b.

Record the derivative functions and any patterns you saw here:

Exploration 2: Begin by finding the derivative function for $f(x)=x^{3}$.
6. What is the derivative function of $f(x)=x^{3}$? \qquad

Now explore some other variations of this function and see if you can find a pattern in their derivatives.
7. $f(x)=a x^{3}$, where a equals $2,3,4$, etc., until you see a pattern.
8. $f(x)=(x-a)^{3}$, where a equals $2,3,4$, etc., until you see a pattern.
9. $f(x)=a x^{3}+b$; keep a constant and change b.

Record the derivative functions and any patterns you saw here:

