Area Patterns

Math Concepts

- whole numbers
- addition
- comparing numbers
- multiplication
- estimation
- functions
- measuring area
- similar shapes

Materials

- TI-10, TI-15 Explorer ${ }^{\text {TM }}$
- Pattern Blocks
- Area Patterns recording sheets
- pencils

Overview

Students will investigate patterns in ordered pairs generated by constructing a sequence of similar shapes. They will then use the patterns and the calculator to predict the number of blocks it will take to build a specific shape in the sequence.

Introduction

1. Have students use the green triangles from Pattern Blocks (or the paper triangle provided on page 39) to make the following pattern.

2. Ask students to predict how many green triangles it will take to make the next larger triangle of the same shape. Continue the pattern.
3. In the table on the recording sheet, have students draw each triangle and then record the number of blocks it took to make it (its area in green triangles).
4. Have students investigate the patterns in their tables, use the calculator to predict the area of the 95th triangle, and write their predictions on the recording sheet.
5. Have students choose a different Pattern Block (such as the blue rhombus) and perform the same investigation.
6. Ask students to compare the patterns generated by the different shapes and write about their discoveries.

Area Patterns (continued)

Collecting and Organizing Data

While students explore their patterns, ask questions such as:

- What unit of area are you using to measure the area of each shape? Why do you think it is an effective unit of measure?
- What do the numbers in your table(s) represent?
- What patterns do you notice in your table(s)?
- How can you be sure you made the next larger triangle? Do the patterns in your table help you discover when you have skipped a triangle? How?

How are the numbers you see in the calculator display connected to the numbers in your table(s)?

Use the scroll feature, $\langle\boldsymbol{i c}\rangle \vec{j}\rangle$ to compare results.

How can you use the calculator to predict the number of blocks it will take to construct the 95th shape in your sequence?

What happens if your numbers get too big?

How did you use your calculator to help you make predictions?

How did you use your calculator to discover the patterns in the ordered pairs in your table(s)?

Area Patterns (continued)

Continuing the Investigation

Have students:

- Choose shapes not included in the Pattern Blocks (such as a rectangle or right triangle on page 39). Use the patterns in the ordered pairs generated by the Pattern Blocks to investigate patterns generated by these other shapes.
- Generate a table of ordered pairs and see whether they can find a series of shapes to go with it.

Algebra
Name:

Area Patterns

Recording Sheet

Collecting and Organizing Data

Our first four or five similar shapes:

Our data is recorded here:

Shapes	Area (\# of blocks)
$\mathbf{1}$ (st)	
$\mathbf{2}$ (nd)	
$\mathbf{3}$ (rd)	
$\mathbf{4}$ (th)	
5 (th)	
$\mathbf{6}$ (th)	
\cdot	
\cdot	
\cdot	

Analyzing Data and Drawing Conclusions

- A pattern we discovered in our table is:
- The 95 th shape will take \qquad blocks to build. We think this because:

Questions we thought of while we were doing this activity:

Area Patterns

Pattern Blocks

