## Finding Patterns and Graphing Functions

The first 4 figures of 2 different patterns are given below. SQUARE:


STAIRCASE:


For each pattern, draw the $5^{\text {th }}$ and $6^{\text {th }}$ figures. Determine the perimeter and area for each, and then complete the tables for figure numbers 1 through 6. Look for patterns.

SQUARE

| Figure \# | 1 | 2 | 3 | 4 | 5 | 6 | $n$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Area |  |  |  |  |  |  |  |
| Perimeter |  |  |  |  |  |  |  |

STAIRCASE

| Figure \# | 1 | 2 | 3 | 4 | 5 | 6 | n |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Area |  |  |  |  |  |  |  |
| Perimeter |  |  |  |  |  |  |  |

Next determine the expression for the area and perimeter for the nth term of each figure. Check your expression by using values for $n$ that you already know. (If it is correct it must work for every figure \#!)

Finally, make one graph for each figure. (Your first graph should show the area and perimeter values for the squares. The second graph should show the staircase values.) Let the $x$ be the figure number, and $y$ be the corresponding area or perimeter value. Clearly label or color-code your graphs. Use your nth term expression to write an equation for each line or curve on the graphs.

Analyze: What makes a pattern linear or non-linear? How do the patterns going across in your table relate to your nth term expression?

