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Abstract: This activity is an application of integration. Students use calculus to find the
area of a region and the volumes of solids generated by the region. They use the symbolic
capacity of their calculator and calculus to determine the exact answers.

NCTM Principles and Standards:

Algebra standards

a) analyze functions of one variable by investigating rates of change, intercepts, zeros,
asymptotes, and local and global behavior;

b) use symbolic algebra to represent and explain mathematical relationships;

c) judge the meaning, utility, and reasonableness of the results of symbol
manipulations, including those carried out by technology.

d) draw reasonable conclusions about a situation being modeled.

Geometry standards:

a) Analyze characteristics and properties of two- and three-dimensional geometric
shapes and mathematical about geometric relationships

b) draw and construct representations of two- three-dimensional geometric objects using
a variety of tools;

c) visualize three-dimensional objects and spaces from different perspectives and
analyze their cross sections;

Measurement standards: understand and use formulas for the area, surface area, and

volume of geometric figures, including cones, spheres, and cylinders;

Problem Solving Standard: build new mathematical knowledge through problem

solving; solve problems that arise in mathematics and in other contexts; apply and adapt a

variety of appropriate strategies to solve problems; monitor and reflect on the process of

mathematical problem solving.

Reasoning and Proof Standard

a) recognize reasoning and proof as fundamental aspects of mathematics;

b) make and investigate mathematical conjectures;

c) develop and evaluate mathematical arguments and proofs;

d) select and use various types of reasoning and methods of proof.

Representation Standard : use representations to model and interpret physical, social,

and phenomena.

Key topic: Applications of Definite Integrals- determining the area, volume and
perimeter of a region

Degree of Difficulty: moderate to advanced
Needed Materials: TI-89 calculator
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Situation: Consider the region in the first quadrant enclosed by the graphs of yl = cos x
and y2 =sin x
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Use your calculator to find where the two graphs intersect:
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The calculator uses the symbol @n1 to indicate an arbitrary integer as it represents the

family of solutions. We can find the value in the first quadrant by setting @nl =1:
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Find the area of the region.
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Find the volume of the region as it is rotated about the around x-axis by using the washer
method. The outside radius of the region is cos x, the inside radius is sin x, and the
thickness is delta x.
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Note: It is important to use the difference of squares of the functions rather than the
square of the difference.
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Find the volume of the region as it is rotated about the around y-axis by using the shell
method. The height of each shell is cos x-sin x, the radius of each shell is x, and the
thickness of each shell is delta x.
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One can also revolve the region around other axes:

Find the volume of the region as it is rotated about the around the line y = -2 by using the
washer method. The outside radius of the region is cos x + 2,the inside radius is sin x +
2, and the thickness is delta x.
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Find the volume of the region as it is rotated about the around the line x = -2 by using the
shell method. The height of each shell is cos x - sin x, the radius of each shell is x + 2,
and the thickness of each shell is delta x.
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We can also find the volume of solids with known cross sections. Consider the solid
whose base is our region and whose cross sections perpendicular to the x-axis are
equilateral triangles.
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What is the perimeter of the region? To find this, use the arc length formula:
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The other length of the triangular

region is 1, so the perimeter is .852 + 1.058 + 1 =2.91
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