The Region Between Two Curves
by John F. Mahoney
Banneker Academic High School, Washington, DC
mahoneyj@sidwell.edu

Abstract

This activity is an application of integration. Students use calculus to find the area of a region and the volumes of solids generated by the region. They use the symbolic capacity of their calculator and calculus to determine the exact answers.

NCTM Principles and Standards:

Algebra standards

a) analyze functions of one variable by investigating rates of change, intercepts, zeros, asymptotes, and local and global behavior;
b) use symbolic algebra to represent and explain mathematical relationships;
c) judge the meaning, utility, and reasonableness of the results of symbol manipulations, including those carried out by technology.
d) draw reasonable conclusions about a situation being modeled.

Geometry standards:

a) Analyze characteristics and properties of two- and three-dimensional geometric shapes and mathematical about geometric relationships
b) draw and construct representations of two- three-dimensional geometric objects using a variety of tools;
c) visualize three-dimensional objects and spaces from different perspectives and analyze their cross sections;
Measurement standards: understand and use formulas for the area, surface area, and volume of geometric figures, including cones, spheres, and cylinders;
Problem Solving Standard: build new mathematical knowledge through problem solving; solve problems that arise in mathematics and in other contexts; apply and adapt a variety of appropriate strategies to solve problems; monitor and reflect on the process of mathematical problem solving.

Reasoning and Proof Standard

a) recognize reasoning and proof as fundamental aspects of mathematics;
b) make and investigate mathematical conjectures;
c) develop and evaluate mathematical arguments and proofs;
d) select and use various types of reasoning and methods of proof.

Representation Standard : use representations to model and interpret physical, social, and phenomena.

Key topic: Applications of Definite Integrals- determining the area, volume and perimeter of a region

Degree of Difficulty: moderate to advanced
Needed Materials: TI-89 calculator

Situation: Consider the region in the first quadrant enclosed by the graphs of $y 1=\cos x$ and $y 2=\sin x$

Use your calculator to find where the two graphs intersect:

The calculator uses the symbol @n1 to indicate an arbitrary integer as it represents the family of solutions. We can find the value in the first quadrant by setting $@ \mathrm{n} 1=1$:

Find the area of the region.

Find the volume of the region as it is rotated about the around x -axis by using the washer method. The outside radius of the region is $\cos x$, the inside radius is $\sin x$, and the thickness is delta x .

Note: It is important to use the difference of squares of the functions rather than the square of the difference.

Find the volume of the region as it is rotated about the around y-axis by using the shell method. The height of each shell is $\cos x-\sin x$, the radius of each shell is x, and the thickness of each shell is delta x .

One can also revolve the region around other axes:

Find the volume of the region as it is rotated about the around the line $y=-2$ by using the washer method. The outside radius of the region is $\cos x+2$,the inside radius is $\sin x+$ 2 , and the thickness is delta x .

Find the volume of the region as it is rotated about the around the line $x=-2$ by using the shell method. The height of each shell is $\cos x-\sin x$, the radius of each shell is $x+2$, and the thickness of each shell is delta x .

We can also find the volume of solids with known cross sections. Consider the solid whose base is our region and whose cross sections perpendicular to the x -axis are equilateral triangles.

What is the perimeter of the region? To find this, use the arc length formula:

