The Region Between Two Curves

by John F. Mahoney Banneker Academic High School, Washington, DC mahoneyj@sidwell.edu

Abstract: This activity is an application of integration. Students use calculus to find the area of a region and the volumes of solids generated by the region. They use the symbolic capacity of their calculator and calculus to determine the exact answers.

NCTM Principles and Standards:

Algebra standards

- a) analyze functions of one variable by investigating rates of change, intercepts, zeros, asymptotes, and local and global behavior;
- b) use symbolic algebra to represent and explain mathematical relationships;
- c) judge the meaning, utility, and reasonableness of the results of symbol manipulations, including those carried out by technology.
- d) draw reasonable conclusions about a situation being modeled.

Geometry standards:

- a) Analyze characteristics and properties of two- and three-dimensional geometric shapes and mathematical about geometric relationships
- b) draw and construct representations of two- three-dimensional geometric objects using a variety of tools;
- c) visualize three-dimensional objects and spaces from different perspectives and analyze their cross sections;

Measurement standards: understand and use formulas for the area, surface area, and volume of geometric figures, including cones, spheres, and cylinders;

Problem Solving Standard: build new mathematical knowledge through problem solving; solve problems that arise in mathematics and in other contexts; apply and adapt a variety of appropriate strategies to solve problems; monitor and reflect on the process of mathematical problem solving.

Reasoning and Proof Standard

- a) recognize reasoning and proof as fundamental aspects of mathematics;
- b) make and investigate mathematical conjectures;
- c) develop and evaluate mathematical arguments and proofs;
- d) select and use various types of reasoning and methods of proof.

Representation Standard : use representations to model and interpret physical, social, and phenomena.

Key topic: Applications of Definite Integrals- determining the area, volume and perimeter of a region

Degree of Difficulty: moderate to advanced **Needed Materials**: TI-89 calculator

Situation: Consider the region in the first quadrant enclosed by the graphs of $y_1 = \cos x$ and $y_2 = \sin x$

Use your calculator to find where the two graphs intersect:

The calculator uses the symbol @n1 to indicate an arbitrary integer as it represents the <u>family of solutions</u>. We can find the value in the first quadrant by setting @n1 = 1:

F1+ F2- Tools A19eb	r F3+ F4+ raCa1cOtherP	F5 F r9mi0(C1e	67 an Up
	× = -	(4∙@n1	- <u>3)·π</u>
•×=(4	•@n1 = 3)•: 4	<u>π</u> @n1	= 1
			$\times = \frac{\pi}{4}$
x=(4*@n1-3)*π/4 @n1=1			
MAIN	RAD AUTO	FUNC	3/30

Find the area of the region. $\frac{\left[\frac{1}{10015},\frac{1}{120},\frac{1}{120},\frac{1}{10$

Find the volume of the region as it is rotated about the around x-axis by using the washer method. The outside radius of the region is $\cos x$, the inside radius is $\sin x$, and the thickness is delta x.

F1+ F2 ToolsA19e	:• F3+ F4+ braCa1cOtherP	FS F6 r9ml0Clea	, 1 1 1 2 − 1
$\bullet \pi \cdot \int_{0}^{\frac{\pi}{4}}$	$(\cos(x))^2$	-(sin(×))²€
			<u>π</u> 2
s(x)^	<u>2-sin(x)^</u>	2,×,Θ,π	(/4)
MAIN	RAD AUTO	FUNC	5/30

Note: It is important to use the difference of squares of the functions rather than the square of the difference.

Find the volume of the region as it is rotated about the around y-axis by using the shell method. The height of each shell is $\cos x - \sin x$, the radius of each shell is x, and the thickness of each shell is delta x.

F1+ F2+ ToolsAlgebro	F3+ F4+ CalcOther	FS F Pr9mIDC1e	ίδτ απ Uρ
• $2 \cdot \pi \cdot \begin{bmatrix} \frac{\pi}{4} \\ 0 \end{bmatrix}$	((cos(×)-sin(×))•ו
		π · (π ·	<u>12 - 4)</u> 2
cos(x)-	sin(x)))×,×,0,	π/4)
MAIN	RAD AUTO	FUNC	6/30

One can also revolve the region around other axes:

Find the volume of the region as it is rotated about the around the line y = -2 by using the washer method. The outside radius of the region is $\cos x + 2$, the inside radius is $\sin x + 2$, and the thickness is delta x.

$$\frac{\left[\frac{F1}{10015}\left[n1560+74\right](21)\left[n1560+74\right]$$

Find the volume of the region as it is rotated about the around the line x = -2 by using the shell method. The height of each shell is $\cos x - \sin x$, the radius of each shell is x + 2, and the thickness of each shell is delta x.

$$\begin{bmatrix} F_{4}^{4}, F_{2}^{2}, F_{3}^{2}, F_{4}^{3}, F_{4}^{4}, F_{5}^{5}, F_{6}^{4}, F_{5}^{6}, F_{6}^{4}, F_{5}^{6}, F_{6}^{4}, F_{5}^{6}, F_{6}^{6}, F_{6}^{$$

We can also find the volume of solids with known cross sections. Consider the solid whose base is our region and whose cross sections perpendicular to the x-axis are equilateral triangles.

$$\begin{bmatrix} \frac{F_{4}}{10015} \\ \frac{F_{4}}{10015} \\ \frac{F_{4}}{10015} \\ \frac{\pi}{4} \\ \frac{\pi}{4} \\ \frac{(\cos(x) - \sin(x))^2 \cdot \sqrt{3}}{4} \\ \frac{(\pi - 2) \cdot \sqrt{3}}{16} \\ \frac{(\pi - 2) \cdot \sqrt{3}}{16} \\ \frac{\sin(x))^2 2 \times \sqrt{3} \cdot \sqrt{4}, \\ \frac{\pi}{100} \\$$

What is the perimeter of the region? To find this, use the arc length formula:

$\frac{f_{1}}{f_{0}} \frac{f_{2}}{f_{0}} \frac{f_{2}}{f_{0}} \frac{f_{1}}{f_{0}} \frac{f_{1}}{f_{$	151 - 152 - 153 - 153 - 154 - 155 - 156 -	
	$\bullet \int_{0}^{\frac{\pi}{4}} \sqrt{1 + \left(\frac{d}{d\times}(\sin(x))\right)^2} dx$	
.852 @(cos(x),x)^2)),x,0,π/4) MAIN RAD AUTO FUNC 10/30	1.058 d(sin(x),x)^2)),x,0,π/4) MANN RAD AUTO FUNC 11/30	. The other length of the triangular

region is 1, so the perimeter is .852 + 1.058 + 1 = 2.91