

Maximize the volume of a cone . . . for obvious reasons . . .

 PROJECT DEADLINE: \qquadLAB INSTRUCTIONS: (For steps 1 through 11)

1) Draw a circle of Radius 5 cm and cut it out with scissors. Use Geometry to find the center of the circle. Explain the geometry you applied.
2) Draw a radius, R, and cut along one radius of the circle.
3) Construct a cone by pulling the circle into a cone shape.
4) Select the cone that seems to have the greatest volume, mark
 the central angle, θ. Measure Radius in cm and angle θ in degrees.

$r=$ radius of cone
5) Find the degree measure of the remaining sector.
6) Find the volume of your cone. $V=$

Remember $\mathrm{V}=\frac{1}{3} \pi r^{2} h$
7) Compare your volume to others in the class, using different values of θ.

θ															
$\mathrm{V}(\theta)$				l											

8) Estimate the maximum volume for the cone based on the numerical data shown above.
9) Write a function $\mathrm{V}(\mathrm{h})$ for the volume of your paper cone.
10) Now, write a function $V(\theta)$ for the volume of your paper cone.
11) Find the maximum volume graphically using your preference of $V(h)$ or $V(\theta)$.
12) Find the maximum volume using calculus.
13) Now, solve for the maximum volume of any given cone formed from a circle of radius 1. Use θ and h as variables and then apply calculus to maximize $\mathrm{V}(\theta)$ or $\mathrm{V}(\mathrm{h})$. State the maximum volume and the values of h and θ that will give that maximum.

Remember to include this scoring rubric as the last page of your report.

