Name \qquad
Class \qquad

Problem 1 - Divisible by 7, 11, and 13?

To begin, pick any 3-digit number and repeat it to create a 6-digit number. (459,495 is used here as an example)

1. Write down your number. Make sure everyone in your group has a different number.
2. Enter your number on the Home screen and then divide by 7 to see if you get a remainder of 0 . (Enter the number then press 2nd $\% 7$ ENTER.) Is your number divisible by 7 ? \qquad

3. Next, divide the previous quotient by 11. Press 2nd 10 ENTER. Is your number divisible by $11 ?$ \qquad
4. Next, divide the previous quotient by 13. Press 2nd 13 ENTER. Is your number divisible by $13 ?$ \qquad
What do you notice about the new quotient? \qquad

Would the order that you divided by 7, 11, or 13 affect your result? Try dividing your original number by these divisors in different orders. Write a sentence on your findings.
\qquad
\qquad
5. Did everyone in your group pick a number that was divisible by 7,11 , and 13 ? \qquad
6. If so, discuss within your group why you think everyone's number was divisible by 7 , 11, and 13. Write a sentence or two explaining why you think these special six digit numbers are divisible by 7,11 , and 13. \qquad
\qquad

A Prime Investigation

Problem 2 - Justify Divisibility

Now you will justify the findings from Problem 1 on divisibility.
7. Create another six-digit number by picking a 3-digit number and repeating it. Write down your number. Make sure everyone in your group has a different number.
8. Test your number for divisibility by 7,11 , and 13 like you did in Steps 2-4 above. (Enter your number then press 2nd $\div 7$ ENTER 2nd $\div 10$ ENTER. 2nd $\%$ [3 ENTER.)
Is your number divisible by all three? \qquad

9. Write a sentence explaining your findings from Step 8.
10. Multiply $7 \times 11 \times 13$. What is the product? \qquad
Divide your number in Step 7 by this product. Answer: \qquad
11. Multiply your 3-digit number in Step 7 by this product. Answer: \qquad
Describe the relationship between this product and the special six-digit numbers you created in Step 1 and Step 8. \qquad
12. Examine the screen shot at the right. Multiplying by 1000 is easy to do mentally because you just move the decimal point 3 places to the right.
Multiplying by 1001 is also easy when you think of 1001 as $1000+1$ and then multiply $459 x$ 1000 and add 459×1. This is known as the distributive property.

13. Rewrite your three-digit number as the product of the number and 1001. Then write it using the distributive property as shown in Step 12. \qquad
\qquad
14. Explain how you know 468,468 is divisible by 7,11 , and 13 . \qquad

A Prime Investigation

Problem 3 - Divisibility Tests

Next you'll look at divisibility tests for other prime numbers.
15. Write the divisibility tests for 2,3 , and 5 . \qquad
16. There's also a divisibility test to tell if a number is divisible by 7 . Here is how it works:

- Take all but the last digit (the ones digit) and form a number.
- Subtract twice the ones digit from the number you formed. Now you have a new number.
- Again, take all the digits but the ones digit and form a new number.
- Subtract twice the ones digit from this number.
- Continue this process until you are able to recognize whether the number is divisible by 7 . See the screen to the right.

17. Apply this divisibility rule to your original number in Step 1. Did the test show that your number is divisible by7? \qquad

18. There is a divisibility test for 11 . For example, $6 \underline{5}, 6 \underline{3} 7$ is divisible by 11 . To use the test, sum every other digit, and then take the difference in the two sums.

- The sum of the digits in bold is $6+6+7=19$.
- The sum of the underlined digits is $5+3=8$.
- Now take the positive difference in the two sums and see if the result is divisible by 11. Since $19-8=11$ and 11 is divisible by 11 , then 65,637 is divisible by 11 .

19. In the example at the right, since $18-18=0$, and 0 is divisible by 11 , the original number is divisible by 11.
20. Show how to use the divisibility test for 11 on your original number in Step 1? Does the divisibility test show what you previously found? \qquad

21. Use the divisibility test for 11 to show if 852,345 is or is not divisible by 11 .
22. Number theorists have developed divisibility rules or test for many different numbers. Can you write a divisibility test for a six-digit number to be divisible by 1001 ?
\qquad
\qquad
\qquad
