About the Lesson

Students will graph a figure in the coordinate plane. They will use list operations to perform reflections, rotations, translations, and dilations on the figure, and graph the resulting image using a scatter plot. As a result, students will:

- Perform reflections, rotations, translations, and dilations using lists and scatter plots to represent figures on a coordinate plane.

Vocabulary

- rotation
- reflection
- translation
- dilation

Teacher Preparation and Notes

- This activity is designed to be used in a high school geometry or algebra classroom.
- If an original point on the coordinate plane is denoted by (x, y), then each of the following ordered pairs denotes a transformation:

$$
\begin{array}{ll}
(x,-y) \text { reflect over } x \text {-axis } & (-y, x) \text { rotate } 90^{\circ} \text { around origin } \\
(-x, y) \text { reflect over } y \text {-axis } & (-x,-y) \text { rotate } 180^{\circ} \text { around origin } \\
(y, x) \text { reflect over } y=x & (y,-x) \text { rotate } 90^{\circ} \text { around origin }
\end{array}
$$

- To perform a translation, add or subtract a constant from the list with the x-values or the y-values of the figure.
- This activity is designed to be student-centered with the teacher acting as a facilitator while students work cooperatively. If desired, have students work in groups of 3 . Each person in the group should enter a different combination of lists for Problem 2 and the group should discuss the results.

Activity Materials

- Compatible TI Technologies:

[^0]

Tech Tips:

- This activity includes screen captures taken from the TI-84 Plus CE. It is also appropriate for use with the rest of the TI-84 Plus family. Slight variations to these directions may be required if using other calculator models.
- Watch for additional Tech Tips throughout the activity for the specific technology you are using.
- Access free tutorials at http://education.ti.com/calculato rs/pd/US/OnlineLearning/Tutorials
- Any required calculator files can be distributed to students via handheld-to-handheld transfer.

Lesson Files:

- Transformations_with_Lists Student.pdf
- Transformations_with_Lists_ Student.doc

Problem 1 - Creating a Scatter Plot

Before beginning the activity, students need to clear all entries from the $y=$ screen and all lists.

First, students will enter the data on the worksheet into lists L1 and L2.

After setting up Plot1 for a scatter plot of L1 vs. L2 and changing the window settings, students will view the graph and sketch the figure on the worksheet.

1. Sketch the scatter plot.

Answer:

Problem 2 - Reflections and Rotations

In the list editor, students are to enter the formulas $=-\mathrm{L} 1$ and $=-\mathrm{L} 2$ for L3 and L4 respectively. This will allow them to create several different reflections and rotations of the original figure.

To type L1, students need to press [2nd 1 .
To type L2, students need to press [2nd 20.

$L 4(1)=-3$

For each combination of lists, students are to determine what type of reflection occurred.
2. $x \leftarrow \mathbf{L} 3$ and $y \leftarrow \mathbf{L} 2$

Answer: $(-x, y)$ over y-axis MORMAL FLOAT AUTO REGL RADTAN MP

3. $x \leftarrow \mathbf{L} 1$ and $y \leftarrow \mathbf{L} 4$

Answer: $(x,-y)$ over x-axis
Molmal float huto real radran mp

4. $x \leftarrow \mathbf{L} 2$ and $y \leftarrow \mathbf{L} 1$

Answer: (y, x) over the line $y=x$ MOShal float huto keal radifin mp

Use Plot2 to create the following scatter plots. For each combination, determine what type of rotation occurred.
5. $x \leftarrow \mathbf{L} 4$ and $y \leftarrow \mathbf{L} 1$

Answer: $(-y, x) 90^{\circ}$ around origin
Moshal float huto real radian mp

6. $x \leftarrow \mathbf{L} 2$ and $y \leftarrow \mathbf{L} 3$

Answer: $(-x,-y) 90^{\circ}$ around origin (NORTHLL FLOAT RUTO RERLL RADTAN MIP

7. $x \leftarrow \mathbf{L} 3$ and $y \leftarrow \mathbf{L} 4$

Answer: $(y,-x) 180^{\circ}$ around origin Monmal float futo real radian mp

Problem 3 - Translations

In the list editor, students are to enter the formulas =L1-5

8. Where did the image shift? How many units left/right and how many units up/down?

Answer: The image shifted to the left 5 units and up 3 units.

Now students are to translate the scatter plot into Quadrant 3 by editing the formula bars for L3 and L4. Possible formulas are below.

L3 formula: =L1-15
L4 formula: =L2-10
The image shifted 15 units to the left and 10 units down.

9. Translate the scatter plot into Quadrant 3 by editing the formula bars for L3 and L4.

L3 formula: \qquad
L4 formula: \qquad
Explain how the image shifted.
Sample Answer: L3 formula: =L1-15; L4 formula: =L2-10; The image shifted 15 units to the left and 10 units down.

Problem 4 - Dilations

In the list editor, students are to enter the formulas $=0.5^{\star} \mathrm{L} 1$ and $=0.5^{\star} \mathrm{L} 2$ for L3 and L4 respectively. This will allow them to dilate the original figure.

Students should see that the image decreased in size. If they have trouble seeing the image, they can the mark of the plot to the small dot.

10. Explain what happened to the image.

Sample Answer: The image decreased in size.

Then students are to dilate the scatter plot into Quadrant 3 by editing the formula bars for L3 and L4. Remind students that the scale factor needs to be the same for both lists. Possible formulas are below.

L3 formula: $=-0.5^{*} \mathrm{~L} 1$
L4 formula: $=-0.5^{*}$ L2

11. Dilate the scatter plot into Quadrant 3 by editing the formula bars for L3 and L4.

L3 formula: \qquad
L4 formula: \qquad
Explain what happened to the image.
Sample Answer: L3 formula: $=\mathbf{- 0 . 5} \mathbf{F}^{\star} \mathbf{1}$; L4 formula: $=\mathbf{- 0 . 5}{ }^{\star} \mathbf{L}$; The image decreased in size and is a reflection across the y-axis.

[^0]: TI-84 Plus*
 TI-84 Plus Silver Edition*
 -TI-84 Plus C Silver Edition
 TI-84 Plus CE

 * with the latest operating system (2.55MP) featuring MathPrint ${ }^{\text {TM }}$ functionality.

