According to the Standards:

Instructional programs from preK-grade 12 should enable students to:

- Recognize and use connections among mathematical ideas
- Make and investigate mathematical conjectures

In grades $\mathbf{9 - 1 2}$ students should

1. Students should develop an increased capacity to link mathematical ideas and a deeper understanding of how more than one approach to the same problem can lead to equivalent results.

Calculus Scope and Sequence: Applications of Derivatives
Keywords: Mean Value Theorem, MVT
Description: This activity will illustrate The Mean Value Theorem
Mean Value Theorem: Iff, is a function continuous over a closed interval [a,b], differentiable on the open interval (a, b) then there is a number c in the interval (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
(Alternately stated: Iff, is a function continuous over a closed interval [a,b], differentiable on the open interval (a, b) then there is a number c in the interval (a, b) such that the tangent line at $x=c$, is parallel to the secant line connecting $x=a$ and $x=b$)

Determine whether the hypotheses of the MVT hold for the following and if so, find a value of c satisfying the conclusions of the theorem:

$$
f(x)=1-4 x-x^{2},[-5,0]
$$

Since it's a polynomial function, it will be continuous and differentiable everywhere. So what remains is to find the value of c.

1. Go to the $\mathrm{Y}=$ screen and input the function into y 1
2. Graph in the standard window (Zoom - 6)
3. Find the equation of the secant line through the interval given
4. Find the value of c
5. Find the equation of the tangent line
6. Sketch both lines on the graph for visual confirmation

Slope of Secant line:

Equation of Secant line:

First we need to get the derivative of y1 and store it in y3

- Go to HOME
- Go to F3-Calc-\#1
- Derivative syntax: (function, variable)

To Store in y3:

- Go to $\mathrm{Y}=$
- Go to $\mathrm{y} 3(\mathrm{x})$
- Press $2^{\text {nd }}-$ Ans-ENTER

Finding a value of c :

- Go to HOME
- Use F2-Algebra-\#2 Solve
- Solve arguments: (function=solution, variable)

The Equation of the tangent line:

(note: be sure to shut off the derivative function using F4)
The graph:

What you see is a picture of where the instantaneous rate of change (the derivative) is equal to the average rage of change over the interval given.

