Teacher Notes

\author{

Activity 8

 \section*{Two Dimensional Particle Motion}}

Objective

- Students will explore the motion of a projectile parametrically by adjusting the projectile's initial height, initial velocity and angle to the horizontal.

Applicable TI InterActive! Functions

- Define variable: = value
- Mode settings
- Parametric graph

Ω

Problem

Students will explore the motion of a projectile using the parametric equations $x(t)=x_{0}+v_{0} \cos (\theta) t$ and $y(t)=y_{0}+v_{0} \sin (\theta) t+\frac{1}{2} g t^{2}$ by changing the parameters of the equations and observe the results. The students will then examine problems involving two-dimensional particle motion.

Exploration

1. through 10 .

Analysis

1. $t=3.53$ or $3.54 \mathrm{~s} \quad x=70.6$ or $70.8 \mathrm{~m} \quad y=61.22 m$
2. $t=7.07 \mathrm{~s}$
$x=141.4 m$

$$
y=-0.01 m
$$

3. vo: $=30$ The particle does not rise as high or travel as far horizontally.
vo: $=50 \quad$ The particle rises higher and travels further horizontally.
Change Xmax to 250 and Tmax to 9 to see a complete graph.
4. $\theta:=30 \quad$ The particle does not rise as high and travels about the same horizontally.
$\theta:=70 \quad$ The particle rises higher and does not travel as far horizontally.
5. yo: $=10$ The graph is shifted up 10 m making the object rise higher and travel further horizontally.
yo: $=15$ The graph is shifted up 15 m making the object rise higher and travel further horizontally.
6. The greater the value of v_{0}, the higher and further the object will travel. The greater the value of θ, the higher the object will rise. But the horizontal distance will decrease once the angle reaches 45°. The graph of the object is shifted up as y_{0} is increased.

Additional Exercises Solutions

1. $t=[0,3]$
$x=[0,40]$
$y=[-1,10]$
Highest Point:
$t=1.02 s$
$x=17.67 m$
$y=5.10 m$
Strikes the ground:

$t=2.04 s$
$x=35.33 \mathrm{~m}$
$y=0.01 m$
2. $t=[0,6]$,
$x=[0,450]$,
$y=[-10,50]$
Highest Point:
$t=2.79 \mathrm{~s}$
$x=209.74 m$
$y=39.70 m$
Strikes the ground:

$t=5.64 s$
$x=423.99 \mathrm{~m}$
$y=-0.05 m$
3. $t=[0,30]$
$x=[0,5000]$
$y=[-100,1200]$
Highest Point:
$t=14.43 \mathrm{~s}$
$x=2040.71 m$
$y=1021.41 m$
Strikes the ground:

$t=28.87 \mathrm{~s}$
$x=4082.83 m$
$y=-0.20 m$
4. The angle is 45°. Students should fix the values of v_{0} and y_{0} and change θ until they see that the maximum horizontal distance occurs at that point.
5. Students should use the steps 1 through 9 from the Activity to see the results.
