

Class __

What exactly is the log or logarithm function? To learn about it, press $\boxed{Y=}$ and enter the equations $y = 10^x$ and $y = \log(10^x)$.

Press 2nd [TABLE] to view the table.

- What do you notice about the numbers in the three columns?
- What is the value of 10^3 ? Of log (10^3) ?

Set the window in order to view the graph. Press WINDOW. And adjust the settings as shown.

Press GRAPH.

 Why does the graph of y = log(10^x) appear to be the same as the graph of y = x?

Press [2nd] [TBLSET]. Set the table to examine what happens for negative values of x (negative exponents) and for fractional values of x. View the table.

• Do the relationships noticed earlier remain the same? If not, explain how they are different.

Press [2nd] [QUIT] to return to the Home screen. Use [LOG] to evaluate log(100). Because $10^2 = 100$, the calculation returns a value of 2.

 Try finding the exponent for other values of 10^x such as log(64) as shown. Record your findings.

What happens if the base of your exponential function is not 10? How does that affect the log?

Press \underline{Y} and clear the previous equations. Enter $y = 4^x$ as shown.

Press 2nd [TABLE] to view the table.

• What is the value of 4³? Of 4⁴?

Plot1 Plot2 Plot3 <Y1∎4^X Y2= ¥3= **γ**μ= 5 = 6= Yz≡

Press 2nd [QUIT] to return to the Home screen. Use LOG to evaluate log₄64. Use the **change-of-base property** for logarithms, which says $\log_b a = \frac{\log a}{\log b}$.

• How do these results match the results from the table of values?

109(64)/109(4)	' ,
109(128)/109(4	p_{s}^{2}
-	·• J