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xX Chapter 7

u
Nonlinear Inthischapter, you will explore the nonlinear model for a simple

pendulum. The physical realization of a pendulum is a weight
Pendulum attached to one end of a rigid rod swinging from a fixed pivot at
Problems the other end of the rod.
Introduction

The standard model for a pendulum (assuming the mass of the rigid rod is negligible) is
0= —% sin @, 6(t,)=6,, 6= o [Nonlinear Pendulum]

where 0 is the angle of deflection of the pendulum from vertical, g is the acceleration due to gravity,
and [ is the length of the rigid rod. The single dot above the function is Newton’s notation for a
derivative. In mathematical physics and engineering, you use this notation (and the double dot for a
second derivative) exclusively for time derivatives. It is then common to say that for small angles, you
can use the approximationsin 8 = 8 to work with the linear second-order equation that gives simple
harmonic motion as a solution.

6=- :?19, 0(t)) =6,, 0=0t [Linear Pendulum]

Here you will explore how the solutions to these two problems differ, both when the “small angle
assumption” is valid and when it is not.

Example 1: The Small Angle Assumption

For simplicity, suppose that the pendulum is released in the position of a small angle from the vertical,
for example, 0< 8, <15°, a, =0.

Note: It is common lo give measurements in degrees because this means of measurement is easier
to visualize. Radian measurement, however, must be used in the actual computations for the
differential equation here.
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Assume that the length of the pendulum is such that g/l =2. Then it is well known that the solution
for the linear pendulum problem is

(1) =6, cos(\/z )

Look at the solution of the nonlinear problem for a short time span graphically and look at the solution
for a long time span numerically and compare the results.

Solution
Look at 6, equal to 5°, 10°, and 15°.

1.

Place the initial angles (in radians) that you wish to
consider in a list and store to TO (T zero).

{6*m /180, 10% & /180, 15% & /180} TO

Enter the second order nonlinear pendulum equation as
a first-order system. (Figure 7.1)

Use the list you have just stored as the initial condition
for QI1 by typing the name TO0 there. The list will
appear in the QI1 field. Then enter a list of zeros for
Q12 of the same length. (Figure 7.2)

Adjust all of the other settings as shown in Figures 7.3
through 7.6.

Each looks very much like the graph of a multiple of
008(«/5 r)

In particular, you expect the first zero at about
t =2 /4 = 1111072073454

which you store as A. Then you expect another zero if you
add a multiple of

V2 112 ~222144146908

which you store as B. The zeros in the plot should be
approximately 1.11072, 3.33216, 5.55360, 7.77505, and
9.99649.
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CHAPTER 7: NONLINEAR PENDULUM PROBLEMS 71

Display the plot of the solutions. (Figure 7.7)

Figure 7.7
To speed up the computations, change the initial LELTEE%
conditions to be Ql1= 15% 7 /180, Ql12=0. You can then Euler
evaluate the solution to the differential equation either 'gﬂg % Fo
in the home screen (getting the command from the EKPR

CATLG menu) or in the graph screen (getting the menu
command with the key). (Figure 7.8)

The command eval only accepts an argument between el (A+ED
tMin and tMax. Thus, to check for longer time, change {-. 004493934755 . 365
eual C(A+Z+E)
tMax = 100 and compute {.887311323542 -.363.
eval (A+34B)
eval (A+20*B) {.044208678652 -.314114369313) {-.010080683298 .360..
eval (A+40¥B) {.060256684912 -.259491122303)
Figure 7.9
All of these evaluations give a first term in the list that
is acceptably close to zero, given our tolerance for
numerically solving the differential equation. The
second term is the derivative Q2 evaluated at the same JI.-' }r
point, and this always has absolute value near 0.37, Eu eh P AT 4*3\
which is close to 6,+/2 . (Figures 7.9 and 7.10)
Figure 7.10

Another way to see the circular nature of the solution in
this situation is to look at a phase diagram, changing
the axes editor ([F4] AXES) to x=Q1, y=Q2, change the e e
differential equation format screen FORMT) to
DirFld, and change the differential equation window
editor WIND) to tMin=0, tMax=10, tStep=.1,
tPlot=0, xMin=".5 xMax=.5, xScl=.1, yMin=".4,
yMax=.4,yScl=.1,difTol=5E ~4. Leave the initial
condition as Q11=.26179938779915, Ql12=0.

(Figure 7.11)
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Example 2: Pendulum Problems with Angles of 30° to 60°

Compare the solutions to the nonlinear and linear pendulum problems for initial angles between 30°

and 60°, or

Continue to assume that the initial rate of change of the angle is zero (released) and that g/ = 2.

0524 <6, <1.047 .

Solution

1.

Keep the nonlinear differential equation from Example
1 in the variables Q'1 and Q'2. To compare the graphs
of the solutions, add the linear pendulum equations to
the system. The added equations Q'3 and Q'4 are
uncoupled from the first two equations (and could be
solved independently). The TI-86 will numerically solve
this as one big system.

You will need to remember that even when only one
part is plotted, there needs to be similar initial
conditions for all four unknowns. You have changed the
style for the last two equations to thin in Figure 7.12.
See Figures 7.12 through 7.20 as you compare direction
fields and (later) solutions. Note that the initial
conditions fields remain blank. (Figure 7.16)
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CHAPTER 7: NONLINEAR PENDULUM PROBLEMS 73

2. Direction fields show us little difference yet, but the b T R X
solutions will differ a little more if you change the % ? % E ??EE?E S ? ? }; :
differential equation format screen (FORMT) to AREEEE YL SR
FIdOff, and set initial conditions to be Q11={0.6, 1}, B o3l ot R EEL
Ql2={0, 0}, @13={0.6, 1}, and Q14={0, 0}. Change the a- -

range in the window editor to xMin=0, xMax=10,

Figure 7.20
xScl=1. (Linear)
3. Plot with axes x=t and y=Q3. (Figure 7.21)
Save this as a picture with a STPIC command. \ A A
(kas
Figure 7.21

4. Plot with axes x=t and y=Q1. (Figure 7.22)

5. Press (RCPIC) to recall the picture
from Step 3 (Figure 7.23) where you see that the linear
and nonlinear models start to differ, even after only a
few swings.

Figure 7.23

Note how the increasing initial amplitude is changing the period of the solutions in the nonlinear
model, but not in the linear model. You can see this difference even more if you look numerically at
longer times, as you did in Example 1. A and B have the same values as in Example 1 because the
period of the linear model solution does not change with amplitude. First change to tMax=50, QI1=1,
Ql2=0, Q13=1, and Q14 =0. Then you can compute the following (reporting only six decimal places).

eval A {0.099530 -1.347834 -0.000169 -1.412937}
eval (A+4*B)  {0.768173 -0.833252 -0.001615 -1.402558}
eval (A+20¥B) {0.668089 -0.940112 -0.007239 -1.361533}
Theoretically, the third item each time, Q3, should be zero. The fourth item each time should be

il

These computed numbers exhibit normal roundoff errors for a numerical solution. The first and
second items on each line above are just as accurately computed.
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Example 3: Pendulums with a Push

Suppose that you give the pendulum a big push, releasing it just as it passes the vertical with 6, =0.
Assume that g/ =2 so that you can continue to use the same equations in the differential equation
editor. Experiment with how the size of Q12=Q14 affects the nonlinear and linear solutions.

Solution

1.

Begin by choosing initial conditions 6,=Q12=Ql4=1
and 6,= Ql1=Q13=0, with yMin="1 and yMax=1 as
shown in Figure 7.24. Then change 6,’=Q12=Q14 to the
values 1.5 (Figure 7.25, yMin="1.5, yMax=1.5), 2
(Figure 7.26, yMin="2, yMax=2), 2.8, 2.84, and 2.9
(Figures 7.27 through 7.29, yMin= "3, yMax=10).

Figures 7.24 through 7.29 have axes x=t and y=Q with
only equations Q'1 (thick) and Q'3 (thin) selected. In all of
the plots, tMin=0, tMax=20, xMin=0, xMax=20, and
difTol=5E 4.

In Figures 7.28 and 7.29, the nonlinear model (thick)
actually flips over the top. Since there is no friction or
air resistance in the model, the pendulum will just keep
flipping over the top forever.

23=.6991084259

Figure 7.24

21=.91004639056

Figure 7.25

t=6.5 03=.3234211599 Gi=z. 7338273221 |
Figure 7.26 Figure 7.27
1 1
& n’x P L ,-’ﬂ& Iﬁ
k=3 U U R1=3.Ez0BEE1285 k=3 N Q1=3 962890241
Figure 7.28 Figure 7.29
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Exercises

1.

An old-fashioned grandfather clock uses a pendulum to give it a regular periodic time interval
with which to measure the passage of time. The weight of the pendulum can be adjusted up and
down the rod to change the length of the pendulum /. Compute both the linear and nonlinear
pendulum model in Example 1, keeping the same small initial angle 6, and o, =0 but using
different vales for ¢/ from 1.5 to 2.5 (which would correspond to lengthening or shortening 7).

In Example 2, expand the window in Figure 7.18 and use the. EXPLR feature to investigate
various solutions for initial conditions of the magnitude considered in that example.

There is a critical value for 6, between 2.8 and 2.84 when the pendulum changes from
returning to the starting position in Example 3 or “flipping over the top.” Determine more
accurately where this happens (at least one more digit) and explore what the solution looks
like very near this value.

Consider adding a term to the nonlinear pendulum equation to represent air resistance to the
motion of the pendulum through the air or friction on the pivot (linear damping).

6 = —% sin @ — k0,  6(1) = 6y, 6 =0, [Nonlinear Pendulum with Linear Damping]

Explore the effect of a friction constant k = 0.03 or 0.5 on the initial conditions from Example 1.

©1997 TEXAS INSTRUMENTS INCORPORATED



