\qquad
\qquad

Problem 1 - A Cartesian Model

On page 1.2, play the animation of Jupiter orbiting around the sun. What shape is the orbit? In what direction does Jupiter move?

Building the Cartesian Model

$$
\text { aphelion }=5.455 \text { A.U. } \quad \text { perihelion }=4.952 \text { A.U. }
$$

- Go to MENU > View > Show Axes to display the coordinate axes. What are the coordinates of the center of the ellipse?
- What are the coordinates of the point representing the sun? Do not use the Coordinates and Equations tool.
- The sun is one focus of the ellipse. Use the Reflection tool (MENU > Geometry > Transformations) to draw the other. What are its coordinates?
- What is the value of a (the semimajor axis) for this ellipse? (Hint: what is $2 a$?)
- Plot one of the points where the ellipse intersects the y-axis $(x=0)$. Label it P. Draw line segments from P to each of the foci. These line segments have length a. Explain why.
- Use the Pythagorean Theorem to solve for b, the distance from the origin to point P.
- Write the equation for the elliptical orbit of Jupiter in the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
- Graph your ellipse equation using the ellipse template by pressing MENU > Graph Entry/Edit > Equation > Ellipse.

Evaluating the Cartesian Model

- Describe the way a point on the curves would move. Does it look like Jupiter's orbit? Explain why or why not.
- List some of the shortcomings of this model.

Problem 2 - A Parametric Model

Exploring Coordinate Equations

Use the graph on page 2.3 to answer the following questions.

- How does Jupiter move as t increases from 0 to 2π ?
- Complete the description of how the horizontal distance between Jupiter and the center of its orbit (represented by the origin) changes as Jupiter orbits the sun:
The distance starts out at the maximum, $a=5.2035$, decreases to 0 , decreases further to $-a$,
\qquad
and then this pattern repeats as Jupiter orbits the sun again.
- Describe how the vertical distance between Jupiter and the center of its orbit changes as Jupiter orbits the sun.

Plot of x-values vs. \boldsymbol{t}-values

- What is the shape of the graph?
- What are the maximum and minimum values? Where have you seen these numbers before?
- Write a function $x(t)$ for this data. Graph it over the data to check. (Go to MENU > Analyze > Plot Function.)

Orbit of Jupiter

Plot of \boldsymbol{y}-values vs. \boldsymbol{t}-values

- What is the shape of the graph? What function does it show?
- What are the maximum and minimum values? Where have you seen these numbers before?
- Write a function $y(t)$ for this data. Graph it over the data to check. (Go to MENU > Analyze > Plot Function.)

Problem 3 - Parametric Model of Jupiter's Orbit

Checking the Coordinate Equations

These two functions are the coordinate equations of the ellipse. They are usually written:

$$
\begin{aligned}
& x(t)=a \cos (t) \\
& y(t)=b \sin (t)
\end{aligned}
$$

- Substitute these equations into the general equation for an ellipse centered at $(0,0)$, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, to check.
- Write the coordinate equations for Jupiter's orbit by substituting the values for a and b.

$$
\begin{aligned}
& x(t)= \\
& y(t)=
\end{aligned}
$$

A Better Model of Jupiter's Orbit

Enter the coordinate equations for Jupiter's orbit in $\mathrm{X} 1(\mathrm{~T})$ and $\mathrm{Y} 1(\mathrm{~T})$ on page 3.2. Graph them as an animated point on the curve.

