

Problem 1 - A Cartesian Model

On page 1.2, play the animation of Jupiter orbiting around the sun. What shape is the orbit? In what direction does Jupiter move?

Building the Cartesian Model

- Go to **MENU > View > Show Axes** to display the coordinate axes. What are the coordinates of the center of the ellipse?
- What are the coordinates of the point representing the sun? Do not use the Coordinates and Equations tool.
- The sun is one focus of the ellipse. Use the Reflection tool (MENU > Geometry > Transformations) to draw the other. What are its coordinates?
- What is the value of a (the semimajor axis) for this ellipse? (Hint: what is 2a?)
- Plot one of the points where the ellipse intersects the y-axis (x = 0). Label it P. Draw line segments from P to each of the foci. These line segments have length a. Explain why.
- Use the Pythagorean Theorem to solve for *b*, the distance from the origin to point *P*.
- Write the equation for the elliptical orbit of Jupiter in the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- Graph your ellipse equation using the ellipse template by pressing **MENU > Graph Entry/Edit > Equation > Ellipse**.

Evaluating the Cartesian Model

- Describe the way a point on the curves would move. Does it look like Jupiter's orbit?
 Explain why or why not.
- List some of the shortcomings of this model.

Problem 2 - A Parametric Model

Exploring Coordinate Equations

Use the graph on page 2.3 to answer the following questions.

- How does Jupiter move as t increases from 0 to 2π ?
- Complete the description of how the horizontal distance between Jupiter and the center
 of its orbit (represented by the origin) changes as Jupiter orbits the sun:
 The distance starts out at the maximum, a = 5.2035,
 decreases to 0,

decreases further to -a,

and then this pattern repeats as Jupiter orbits the sun again.

• Describe how the vertical distance between Jupiter and the center of its orbit changes as Jupiter orbits the sun.

Plot of x-values vs. t-values

- What is the shape of the graph?
- What are the maximum and minimum values? Where have you seen these numbers before?
- Write a function x(t) for this data. Graph it over the data to check. (Go to MENU > Analyze > Plot Function.)

Plot of y-values vs. t-values

- What is the shape of the graph? What function does it show?
- What are the maximum and minimum values? Where have you seen these numbers before?
- Write a function y(t) for this data. Graph it over the data to check. (Go to MENU > Analyze > Plot Function.)

Problem 3 – Parametric Model of Jupiter's Orbit

Checking the Coordinate Equations

These two functions are the coordinate equations of the ellipse. They are usually written:

$$x(t) = a \cos(t)$$

$$y(t) = b \sin(t)$$

• Substitute these equations into the general equation for an ellipse centered at (0, 0), $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, to check.

• Write the coordinate equations for Jupiter's orbit by substituting the values for a and b.

$$x(t) = \underline{\hspace{1cm}}$$

A Better Model of Jupiter's Orbit

Enter the coordinate equations for Jupiter's orbit in X1(T) and Y1(T) on page 3.2. Graph them as an animated point on the curve.